{"title":"Interpretation of spatio-temporal variation of precipitation from spatially sparse measurements using Bayesian compressive sensing (BCS)","authors":"Peiping Li, Yu Wang","doi":"10.1080/17499518.2023.2188464","DOIUrl":null,"url":null,"abstract":"ABSTRACT Precipitation might change rapidly and vary spatially, therefore, knowledge on spatio-temporal variation of precipitation plays a pivotal role in water resources management, hydrogeological hazard and risk assessment, and city resilience enhancement. However, precipitation monitoring data are collected through a limited number of precipitation stations in practice, and they are often sparse and discontinuous, particularly in spatial domain. Furthermore, regional precipitation data exhibits characteristics of seasonality, periodicity and highly non-stationarity on a long-time scale. Therefore, it is challenging to obtain a spatio-temporal variation of precipitation with high spatial resolution from monitoring data measured at a limited number of precipitation stations. To address these challenges, this study develops a non-parametric spatio-temporal Bayesian compressive sensing (ST-BCS) method for interpolation of spatio-temporally varying, but sparsely measured precipitation data in the spatial domain. The proposed method is able to not only provide precipitation interpolation results with high spatial resolution from a limited number of monitoring stations, but also quantify the associated interpolation uncertainty simultaneously. In addition, ST-BCS is directly applicable to the non-stationary spatio-temporal meteorological data. Furthermore, real precipitation datasets are established to benchmark different spatio-temporal interpolation methods. The benchmarking results show that the proposed ST-BCS method performs well and outperforms the spatial BCS method.","PeriodicalId":48524,"journal":{"name":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","volume":"17 1","pages":"554 - 571"},"PeriodicalIF":6.5000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17499518.2023.2188464","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Precipitation might change rapidly and vary spatially, therefore, knowledge on spatio-temporal variation of precipitation plays a pivotal role in water resources management, hydrogeological hazard and risk assessment, and city resilience enhancement. However, precipitation monitoring data are collected through a limited number of precipitation stations in practice, and they are often sparse and discontinuous, particularly in spatial domain. Furthermore, regional precipitation data exhibits characteristics of seasonality, periodicity and highly non-stationarity on a long-time scale. Therefore, it is challenging to obtain a spatio-temporal variation of precipitation with high spatial resolution from monitoring data measured at a limited number of precipitation stations. To address these challenges, this study develops a non-parametric spatio-temporal Bayesian compressive sensing (ST-BCS) method for interpolation of spatio-temporally varying, but sparsely measured precipitation data in the spatial domain. The proposed method is able to not only provide precipitation interpolation results with high spatial resolution from a limited number of monitoring stations, but also quantify the associated interpolation uncertainty simultaneously. In addition, ST-BCS is directly applicable to the non-stationary spatio-temporal meteorological data. Furthermore, real precipitation datasets are established to benchmark different spatio-temporal interpolation methods. The benchmarking results show that the proposed ST-BCS method performs well and outperforms the spatial BCS method.
期刊介绍:
Georisk covers many diversified but interlinked areas of active research and practice, such as geohazards (earthquakes, landslides, avalanches, rockfalls, tsunamis, etc.), safety of engineered systems (dams, buildings, offshore structures, lifelines, etc.), environmental risk, seismic risk, reliability-based design and code calibration, geostatistics, decision analyses, structural reliability, maintenance and life cycle performance, risk and vulnerability, hazard mapping, loss assessment (economic, social, environmental, etc.), GIS databases, remote sensing, and many other related disciplines. The underlying theme is that uncertainties associated with geomaterials (soils, rocks), geologic processes, and possible subsequent treatments, are usually large and complex and these uncertainties play an indispensable role in the risk assessment and management of engineered and natural systems. Significant theoretical and practical challenges remain on quantifying these uncertainties and developing defensible risk management methodologies that are acceptable to decision makers and stakeholders. Many opportunities to leverage on the rapid advancement in Bayesian analysis, machine learning, artificial intelligence, and other data-driven methods also exist, which can greatly enhance our decision-making abilities. The basic goal of this international peer-reviewed journal is to provide a multi-disciplinary scientific forum for cross fertilization of ideas between interested parties working on various aspects of georisk to advance the state-of-the-art and the state-of-the-practice.