Minimax-robust forecasting of sequences with periodically stationary long memory multiple seasonal increments

M. Luz, M. Moklyachuk
{"title":"Minimax-robust forecasting of sequences with periodically stationary long memory multiple seasonal increments","authors":"M. Luz, M. Moklyachuk","doi":"10.19139/soic-2310-5070-998","DOIUrl":null,"url":null,"abstract":"We introduce stochastic sequences $\\zeta(k)$ with periodically stationary generalized multiple increments of fractional order which combines cyclostationary, multi-seasonal, integrated and fractionally integrated patterns. We solve the problem of optimal estimation of linear functionals constructed from unobserved values of stochastic sequences $\\zeta(k)$ based on their observations at points $ k<0$. For sequences with known spectral densities, we obtain formulas for calculating values of the mean square errors and the spectral characteristics of the optimal estimates of functionals. Formulas that determine the least favorable spectral densities and minimax (robust) spectral characteristics of the optimal linear estimates of functionals are proposed in the case where spectral densities of sequences are not exactly known while some sets of admissible spectral densities are given.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"8 1","pages":"684-721"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We introduce stochastic sequences $\zeta(k)$ with periodically stationary generalized multiple increments of fractional order which combines cyclostationary, multi-seasonal, integrated and fractionally integrated patterns. We solve the problem of optimal estimation of linear functionals constructed from unobserved values of stochastic sequences $\zeta(k)$ based on their observations at points $ k<0$. For sequences with known spectral densities, we obtain formulas for calculating values of the mean square errors and the spectral characteristics of the optimal estimates of functionals. Formulas that determine the least favorable spectral densities and minimax (robust) spectral characteristics of the optimal linear estimates of functionals are proposed in the case where spectral densities of sequences are not exactly known while some sets of admissible spectral densities are given.
具有周期性平稳长记忆多季节增量序列的极小鲁棒预测
我们引入了具有周期平稳的分数阶广义多增量的随机序列$\zeta(k)$,它结合了循环平稳、多季节、积分和分数积分模式。我们基于随机序列$\zeta(k)$在点$k<0$处的观测,解决了由其未观测值构造的线性泛函的最优估计问题。对于具有已知谱密度的序列,我们得到了泛函最优估计的均方误差值和谱特性的计算公式。在序列谱密度不完全已知的情况下,给出了一些可容许谱密度集,提出了确定泛函最优线性估计的最不利谱密度和最小最大(鲁棒)谱特性的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信