Artificial Neural Networks Oriented Testbed for Multiantenna Wireless Application

Q3 Engineering
S. Priya, M. Premkumar, M. Arun, Vikash Sachan
{"title":"Artificial Neural Networks Oriented Testbed for Multiantenna Wireless Application","authors":"S. Priya, M. Premkumar, M. Arun, Vikash Sachan","doi":"10.18280/i2m.210102","DOIUrl":null,"url":null,"abstract":"This research article provides viable research solutions by using Artificial Neural Networks (ANN) for Multiantenna wireless applications with less computational complexity. Artificial Neural Networks Oriented Testbed (ANNOT) is proposed where intelligence through artificial neurons are exploited for training multiantenna wireless application. A feedforward backpropagation network is trained with the required input parameters using training algorithms and its convergence for iterations for target parameters are simulated and developed. The ANNOT intelligently provides the required outputs from the trained values when validated for the tested output parameter in Multiantenna wireless application such as data transmission. Testbed input target parameters are bandwidth, signal power, channel statistics, noise power and output parameters metrics are capacity, probability of error which are executed in matrix laboratory (MATLAB). Obtained results are analyzed in gradient based algorithms and variants of neural networks for mean square error (MSE) against number of iterations/epochs which provide optimized results from ANNOT with less computational complexity. Validation results are also obtained for capacity and probability of error for data transmission multiantenna wireless application.","PeriodicalId":38637,"journal":{"name":"Instrumentation Mesure Metrologie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instrumentation Mesure Metrologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/i2m.210102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

This research article provides viable research solutions by using Artificial Neural Networks (ANN) for Multiantenna wireless applications with less computational complexity. Artificial Neural Networks Oriented Testbed (ANNOT) is proposed where intelligence through artificial neurons are exploited for training multiantenna wireless application. A feedforward backpropagation network is trained with the required input parameters using training algorithms and its convergence for iterations for target parameters are simulated and developed. The ANNOT intelligently provides the required outputs from the trained values when validated for the tested output parameter in Multiantenna wireless application such as data transmission. Testbed input target parameters are bandwidth, signal power, channel statistics, noise power and output parameters metrics are capacity, probability of error which are executed in matrix laboratory (MATLAB). Obtained results are analyzed in gradient based algorithms and variants of neural networks for mean square error (MSE) against number of iterations/epochs which provide optimized results from ANNOT with less computational complexity. Validation results are also obtained for capacity and probability of error for data transmission multiantenna wireless application.
面向人工神经网络的多天线无线应用试验台
本研究将人工神经网络(ANN)应用于计算复杂度较低的多天线无线应用,提供可行的研究解决方案。提出了面向人工神经网络的测试平台(ANNOT),利用人工神经元的智能来训练多天线无线应用。利用训练算法对前馈反向传播网络进行输入参数训练,并对目标参数迭代的收敛性进行了仿真研究。当在多天线无线应用(如数据传输)中验证测试输出参数时,ANNOT智能地从训练值中提供所需的输出。试验台输入目标参数为带宽、信号功率、信道统计、噪声功率,输出参数指标为容量、误差概率,在矩阵实验室(MATLAB)中执行。在基于梯度的算法和神经网络变体中分析所得结果的均方误差(MSE)对迭代次数/epoch的影响,从而提供了计算复杂度较低的ANNOT优化结果。对数据传输多天线无线应用的容量和误差概率进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Instrumentation Mesure Metrologie
Instrumentation Mesure Metrologie Engineering-Engineering (miscellaneous)
CiteScore
1.70
自引率
0.00%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信