Embeddings from noncompact symmetric spaces to their compact duals

IF 0.5 4区 数学 Q3 MATHEMATICS
Yunxia Chen, Yongdong Huang, N. Leung
{"title":"Embeddings from noncompact symmetric spaces to their compact duals","authors":"Yunxia Chen, Yongdong Huang, N. Leung","doi":"10.4310/AJM.2020.V24.N5.A3","DOIUrl":null,"url":null,"abstract":"Every compact symmetric space $M$ admits a dual noncompact symmetric space $\\check{M}$. When $M$ is a generalized Grassmannian, we can view $\\check{M}$ as a open submanifold of it consisting of space-like subspaces \\cite{HL}. Motivated from this, we study the embeddings from noncompact symmetric spaces to their compact duals, including space-like embedding for generalized Grassmannians, Borel embedding for Hermitian symmetric spaces and the generalized embedding for symmetric R-spaces. We will compare these embeddings and describe their images using cut loci.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/AJM.2020.V24.N5.A3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Every compact symmetric space $M$ admits a dual noncompact symmetric space $\check{M}$. When $M$ is a generalized Grassmannian, we can view $\check{M}$ as a open submanifold of it consisting of space-like subspaces \cite{HL}. Motivated from this, we study the embeddings from noncompact symmetric spaces to their compact duals, including space-like embedding for generalized Grassmannians, Borel embedding for Hermitian symmetric spaces and the generalized embedding for symmetric R-spaces. We will compare these embeddings and describe their images using cut loci.
从非紧对称空间到其紧对偶的嵌入
每个紧致对称空间$M$都允许一个对偶非紧致对称空间$\check{M}$。当$M$是广义Grassmanian时,我们可以将$\check{M}$看作它的一个开子流形,它由类空间的子空间\cite{HL}组成。基于此,我们研究了从非紧对称空间到其紧对偶的嵌入,包括广义Grassmann的类空间嵌入、Hermitian对称空间的Borel嵌入和对称R-空间的广义嵌入。我们将比较这些嵌入,并使用切割轨迹描述它们的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信