On a class of shift-invariant subspaces of the Drury-Arveson space

IF 0.3 Q4 MATHEMATICS
N. Arcozzi, Matteo Levi
{"title":"On a class of shift-invariant subspaces of the Drury-Arveson space","authors":"N. Arcozzi, Matteo Levi","doi":"10.1515/conop-2018-0001","DOIUrl":null,"url":null,"abstract":"Abstract In the Drury-Arveson space, we consider the subspace of functions whose Taylor coefficients are supported in a set Y⊂ ℕd with the property that ℕ\\X + ej ⊂ ℕ\\X for all j = 1, . . . , d. This is an easy example of shift-invariant subspace, which can be considered as a RKHS in is own right, with a kernel that can be explicitly calculated for specific choices of X. Every such a space can be seen as an intersection of kernels of Hankel operators with explicit symbols. Finally, this is the right space on which Drury’s inequality can be optimally adapted to a sub-family of the commuting and contractive operators originally considered by Drury.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2018-0001","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2018-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract In the Drury-Arveson space, we consider the subspace of functions whose Taylor coefficients are supported in a set Y⊂ ℕd with the property that ℕ\X + ej ⊂ ℕ\X for all j = 1, . . . , d. This is an easy example of shift-invariant subspace, which can be considered as a RKHS in is own right, with a kernel that can be explicitly calculated for specific choices of X. Every such a space can be seen as an intersection of kernels of Hankel operators with explicit symbols. Finally, this is the right space on which Drury’s inequality can be optimally adapted to a sub-family of the commuting and contractive operators originally considered by Drury.
关于Drury-Arveson空间的一类平移不变子空间
摘要在Drury-Arveson空间中,我们考虑泰勒系数在集合Y⊂中得到支持的函数的子空间ℕd具有ℕ\X+ej⊂ℕ\对于所有j=1,d.这是移位不变子空间的一个简单例子,它本身可以被认为是RKHS,具有可以针对X的特定选择显式计算的核。每个这样的空间都可以被视为Hankel算子的核与显式符号的交集。最后,这是一个正确的空间,在这个空间上,Drury不等式可以最优地适应Drury最初考虑的通勤算子和收缩算子的一个子族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信