Higher order Toda brackets

IF 0.5 4区 数学
Aziz Kharoof
{"title":"Higher order Toda brackets","authors":"Aziz Kharoof","doi":"10.1007/s40062-021-00285-5","DOIUrl":null,"url":null,"abstract":"<div><p>We describe two ways to define higher order Toda brackets in a pointed simplicial model category <span>\\({\\mathcal {D}}\\)</span>: one is a recursive definition using model categorical constructions, and the second uses the associated simplicial enrichment. We show that these two definitions agree, by providing a third, diagrammatic, description of the Toda bracket, and explain how it serves as the obstruction to rectifying a certain homotopy-commutative diagram in <span>\\({\\mathcal {D}}\\)</span>.</p></div>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"16 3","pages":"451 - 486"},"PeriodicalIF":0.5000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-021-00285-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-021-00285-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe two ways to define higher order Toda brackets in a pointed simplicial model category \({\mathcal {D}}\): one is a recursive definition using model categorical constructions, and the second uses the associated simplicial enrichment. We show that these two definitions agree, by providing a third, diagrammatic, description of the Toda bracket, and explain how it serves as the obstruction to rectifying a certain homotopy-commutative diagram in \({\mathcal {D}}\).

高阶Toda括号
我们描述了在点简单模型类别\({\mathcal {D}}\)中定义高阶Toda括号的两种方法:一种是使用模型分类结构的递归定义,另一种是使用相关的简单充实。我们通过提供Toda括号的第三个图解描述来证明这两个定义是一致的,并解释了它如何成为纠正\({\mathcal {D}}\)中某个同伦交换图的障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信