{"title":"Modeling clustered binary data with nonparametric unobserved heterogeneity: An application to stock crash analysis","authors":"Ruixi Zhao, Renjun Ma, Guohua Yan, Haomiao Niu, Wenjiang Jiang","doi":"10.1002/asmb.2801","DOIUrl":null,"url":null,"abstract":"<p>Various random effects models have been developed for clustered binary data; however, traditional approaches to these models generally rely heavily on the specification of a continuous random effect distribution such as Gaussian or beta distribution. In this article, we introduce a new model that incorporates nonparametric unobserved random effects on unit interval (0,1) into logistic regression multiplicatively with fixed effects. This new multiplicative model setup facilitates prediction of our nonparametric random effects and corresponding model interpretations. A distinctive feature of our approach is that a closed-form expression has been derived for the predictor of nonparametric random effects on unit interval (0,1) in terms of known covariates and responses. A quasi-likelihood approach has been developed in the estimation of our model. Our results are robust against random effects distributions from very discrete binary to continuous beta distributions. We illustrate our method by analyzing recent large stock crash data in China. The performance of our method is also evaluated through simulation studies.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2801","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Various random effects models have been developed for clustered binary data; however, traditional approaches to these models generally rely heavily on the specification of a continuous random effect distribution such as Gaussian or beta distribution. In this article, we introduce a new model that incorporates nonparametric unobserved random effects on unit interval (0,1) into logistic regression multiplicatively with fixed effects. This new multiplicative model setup facilitates prediction of our nonparametric random effects and corresponding model interpretations. A distinctive feature of our approach is that a closed-form expression has been derived for the predictor of nonparametric random effects on unit interval (0,1) in terms of known covariates and responses. A quasi-likelihood approach has been developed in the estimation of our model. Our results are robust against random effects distributions from very discrete binary to continuous beta distributions. We illustrate our method by analyzing recent large stock crash data in China. The performance of our method is also evaluated through simulation studies.
期刊介绍:
ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process.
The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.