Modeling clustered binary data with nonparametric unobserved heterogeneity: An application to stock crash analysis

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ruixi Zhao, Renjun Ma, Guohua Yan, Haomiao Niu, Wenjiang Jiang
{"title":"Modeling clustered binary data with nonparametric unobserved heterogeneity: An application to stock crash analysis","authors":"Ruixi Zhao,&nbsp;Renjun Ma,&nbsp;Guohua Yan,&nbsp;Haomiao Niu,&nbsp;Wenjiang Jiang","doi":"10.1002/asmb.2801","DOIUrl":null,"url":null,"abstract":"<p>Various random effects models have been developed for clustered binary data; however, traditional approaches to these models generally rely heavily on the specification of a continuous random effect distribution such as Gaussian or beta distribution. In this article, we introduce a new model that incorporates nonparametric unobserved random effects on unit interval (0,1) into logistic regression multiplicatively with fixed effects. This new multiplicative model setup facilitates prediction of our nonparametric random effects and corresponding model interpretations. A distinctive feature of our approach is that a closed-form expression has been derived for the predictor of nonparametric random effects on unit interval (0,1) in terms of known covariates and responses. A quasi-likelihood approach has been developed in the estimation of our model. Our results are robust against random effects distributions from very discrete binary to continuous beta distributions. We illustrate our method by analyzing recent large stock crash data in China. The performance of our method is also evaluated through simulation studies.</p>","PeriodicalId":55495,"journal":{"name":"Applied Stochastic Models in Business and Industry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Stochastic Models in Business and Industry","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asmb.2801","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Various random effects models have been developed for clustered binary data; however, traditional approaches to these models generally rely heavily on the specification of a continuous random effect distribution such as Gaussian or beta distribution. In this article, we introduce a new model that incorporates nonparametric unobserved random effects on unit interval (0,1) into logistic regression multiplicatively with fixed effects. This new multiplicative model setup facilitates prediction of our nonparametric random effects and corresponding model interpretations. A distinctive feature of our approach is that a closed-form expression has been derived for the predictor of nonparametric random effects on unit interval (0,1) in terms of known covariates and responses. A quasi-likelihood approach has been developed in the estimation of our model. Our results are robust against random effects distributions from very discrete binary to continuous beta distributions. We illustrate our method by analyzing recent large stock crash data in China. The performance of our method is also evaluated through simulation studies.

具有非参数未观察异质性的聚类二元数据建模:在股市崩盘分析中的应用
针对聚类二值数据,已经建立了各种随机效应模型;然而,这些模型的传统方法通常严重依赖于连续随机效应分布的规范,如高斯分布或beta分布。在本文中,我们引入了一个新的模型,该模型将单位区间(0,1)上的非参数不可观测随机效应乘入具有固定效应的逻辑回归中。这种新的乘法模型设置有助于预测我们的非参数随机效应和相应的模型解释。我们方法的一个显著特征是,根据已知协变量和响应,导出了单位区间(0,1)上非参数随机效应的预测器的封闭形式表达式。在我们的模型的估计中发展了一种准似然方法。我们的结果对随机效应分布具有鲁棒性,从非常离散的二进制分布到连续的beta分布。我们通过分析中国最近的大股灾数据来说明我们的方法。通过仿真研究对该方法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
67
审稿时长
>12 weeks
期刊介绍: ASMBI - Applied Stochastic Models in Business and Industry (formerly Applied Stochastic Models and Data Analysis) was first published in 1985, publishing contributions in the interface between stochastic modelling, data analysis and their applications in business, finance, insurance, management and production. In 2007 ASMBI became the official journal of the International Society for Business and Industrial Statistics (www.isbis.org). The main objective is to publish papers, both technical and practical, presenting new results which solve real-life problems or have great potential in doing so. Mathematical rigour, innovative stochastic modelling and sound applications are the key ingredients of papers to be published, after a very selective review process. The journal is very open to new ideas, like Data Science and Big Data stemming from problems in business and industry or uncertainty quantification in engineering, as well as more traditional ones, like reliability, quality control, design of experiments, managerial processes, supply chains and inventories, insurance, econometrics, financial modelling (provided the papers are related to real problems). The journal is interested also in papers addressing the effects of business and industrial decisions on the environment, healthcare, social life. State-of-the art computational methods are very welcome as well, when combined with sound applications and innovative models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信