Hard X-Ray Hartmann Wavefront Sensor for Beamline Optimization

Q3 Physics and Astronomy
O. de la Rochefoucauld, P. Cook, G. Dovillaire, F. Harms, Lei Huang, M. Idir, N. Kujala, M. Piponnier
{"title":"Hard X-Ray Hartmann Wavefront Sensor for Beamline Optimization","authors":"O. de la Rochefoucauld, P. Cook, G. Dovillaire, F. Harms, Lei Huang, M. Idir, N. Kujala, M. Piponnier","doi":"10.1080/08940886.2022.2058303","DOIUrl":null,"url":null,"abstract":"Introduction Fourth generation synchrotrons and X-ray free-electron lasers (XFEL) are facilities offering diffraction-limited X-ray beams to a very wide community of users pushing the limits of the science of X-ray-matter interaction. The impacted scientific domain includes life science, biology, chemistry, planetology, solid-state physics, and many others relevant to fundamentals and societal applications. The outstanding beam properties of these new emerging X-ray sources allow scientists to use new experimental techniques such as multi-photon processes and X-ray nonlinear atomic physics, creation of warm dense matter and hot plasma, coherent diffraction imaging and holography, and the study of ultrafast processes. However, these outstanding beams require strong development of X-ray optics and are pushing the demand for versatile and fast at-wavelength metrology. Several technologies have been tested for performing at-wavelength metrology directly on the beamline [1–4]. Hartmann Xray wavefront sensors (HWS) have been used for extreme wavefront precision metrology for today’s most advanced scientific research. HWS can be used to provide real-time measurement of the optical quality of a complex beamline at strategic positions, such as after the monochromator or after any complex optical system. Wavefront aberrations, misalignment of the different optical components, and fluctuations of the position of a focal point can be quantified and characterized. In this article, we will report about measurements of beam qualities at two end-stations, one from fourth generation synchrotrons (ESRF) and one on free electron lasers (European XFEL) [5]. These studies demonstrate the versatility of a compact X-ray Hartmann wavefront sensor, allowing the ability to automatically align focusing X-ray optics such as a compound refractive lens, and to control active optics for optimizing the focal spot.","PeriodicalId":39020,"journal":{"name":"Synchrotron Radiation News","volume":"35 1","pages":"3 - 7"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synchrotron Radiation News","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08940886.2022.2058303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction Fourth generation synchrotrons and X-ray free-electron lasers (XFEL) are facilities offering diffraction-limited X-ray beams to a very wide community of users pushing the limits of the science of X-ray-matter interaction. The impacted scientific domain includes life science, biology, chemistry, planetology, solid-state physics, and many others relevant to fundamentals and societal applications. The outstanding beam properties of these new emerging X-ray sources allow scientists to use new experimental techniques such as multi-photon processes and X-ray nonlinear atomic physics, creation of warm dense matter and hot plasma, coherent diffraction imaging and holography, and the study of ultrafast processes. However, these outstanding beams require strong development of X-ray optics and are pushing the demand for versatile and fast at-wavelength metrology. Several technologies have been tested for performing at-wavelength metrology directly on the beamline [1–4]. Hartmann Xray wavefront sensors (HWS) have been used for extreme wavefront precision metrology for today’s most advanced scientific research. HWS can be used to provide real-time measurement of the optical quality of a complex beamline at strategic positions, such as after the monochromator or after any complex optical system. Wavefront aberrations, misalignment of the different optical components, and fluctuations of the position of a focal point can be quantified and characterized. In this article, we will report about measurements of beam qualities at two end-stations, one from fourth generation synchrotrons (ESRF) and one on free electron lasers (European XFEL) [5]. These studies demonstrate the versatility of a compact X-ray Hartmann wavefront sensor, allowing the ability to automatically align focusing X-ray optics such as a compound refractive lens, and to control active optics for optimizing the focal spot.
用于光束线优化的硬X射线Hartmann波前传感器
第四代同步加速器和x射线自由电子激光器(XFEL)是为非常广泛的用户社区提供衍射有限的x射线光束的设备,推动了x射线物质相互作用科学的极限。受影响的科学领域包括生命科学、生物学、化学、行星学、固态物理学以及许多其他与基础和社会应用相关的领域。这些新出现的x射线源的杰出光束特性使科学家能够使用新的实验技术,如多光子过程和x射线非线性原子物理,热致密物质和热等离子体的产生,相干衍射成像和全息术,以及超快过程的研究。然而,这些杰出的光束需要x射线光学的大力发展,并推动了对多功能和快速波长计量的需求。已经测试了几种直接在光束线上进行波长测量的技术[1-4]。哈特曼x射线波前传感器(HWS)已用于当今最先进的科学研究的极端波前精密计量。HWS可用于在关键位置提供复杂光束线光学质量的实时测量,例如在单色仪或任何复杂光学系统之后。波前像差、不同光学元件的不对准和焦点位置的波动可以被量化和表征。在本文中,我们将报道两个端站的光束质量测量,一个来自第四代同步加速器(ESRF),另一个来自自由电子激光器(欧洲XFEL)[5]。这些研究证明了紧凑型x射线哈特曼波前传感器的多功能性,能够自动对准聚焦x射线光学元件,如复合折射透镜,并控制主动光学元件以优化焦斑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Synchrotron Radiation News
Synchrotron Radiation News Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
1.30
自引率
0.00%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信