A spatially explicit N-mixture model for the estimation of disease prevalence

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Ben Brintz, L. Madsen, Claudio Fuentes
{"title":"A spatially explicit N-mixture model for the estimation of disease prevalence","authors":"Ben Brintz, L. Madsen, Claudio Fuentes","doi":"10.1177/1471082X211020872","DOIUrl":null,"url":null,"abstract":"This article develops an approximate N-mixture model for infectious disease counts that accounts for under-reporting as well as spatial dependence induced by person-to-person spread of disease. We employ the model to estimate actual case counts in Oregon of chlamydia, an easily-treated but usually asymptomatic sexually transmitted disease. We describe a combined parametric bootstrap to account for uncertainty in parameter estimates as well as sampling variability in actual case counts. A simulation study illustrates that our method performs well in many scenarios when the model is correctly specified, and also gives reasonable results when the model is misspecified, and no spatial dependence exists.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1471082X211020872","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X211020872","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

This article develops an approximate N-mixture model for infectious disease counts that accounts for under-reporting as well as spatial dependence induced by person-to-person spread of disease. We employ the model to estimate actual case counts in Oregon of chlamydia, an easily-treated but usually asymptomatic sexually transmitted disease. We describe a combined parametric bootstrap to account for uncertainty in parameter estimates as well as sampling variability in actual case counts. A simulation study illustrates that our method performs well in many scenarios when the model is correctly specified, and also gives reasonable results when the model is misspecified, and no spatial dependence exists.
用于疾病流行率估计的空间显式N混合模型
本文开发了一个传染病计数的近似N混合模型,该模型解释了疾病在人与人之间传播引起的报告不足和空间依赖性。我们使用该模型来估计俄勒冈州衣原体的实际病例数,衣原体是一种容易治疗但通常无症状的性传播疾病。我们描述了一种组合的参数自举,以说明参数估计的不确定性以及实际病例数中的采样可变性。仿真研究表明,当模型被正确指定时,我们的方法在许多场景中都表现良好,当模型指定错误且不存在空间依赖性时,我们也给出了合理的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信