Transporting Ability Calculation of the Rotor of Soil-Cultivating Loosening and Separating Vehicle

IF 1.3 Q2 AGRICULTURE, MULTIDISCIPLINARY
Y. Syromyatnikov, A. Kuts, Irina Troyanovskaya, Alexandra Orekhovskaya, E. Tikhonov, V. Sokolova
{"title":"Transporting Ability Calculation of the Rotor of Soil-Cultivating Loosening and Separating Vehicle","authors":"Y. Syromyatnikov, A. Kuts, Irina Troyanovskaya, Alexandra Orekhovskaya, E. Tikhonov, V. Sokolova","doi":"10.2478/ata-2022-0012","DOIUrl":null,"url":null,"abstract":"Abstract Currently, loosening and separating machines that combine the operations of crumbling and separating of soil according to the treated layer depth have come to the forefront. Interaction of the rotor blade of these machines with the soil comprises three stages: soil core formation; steady movement; and dumping of soil from the separating grid. The article determined the direction and magnitude of soil displacement, parameters and shape of the furrow formed after the ripper passage. Based on theoretical research, a mathematical model of the interaction of working bodies with the soil was developed. The initial data were obtained experimentally, and the model was justified. As a result, it was found that the supplied soil layer thickness and the fracture angle of ripper have the greatest influence on the transporting capacity of rotor ripper. Reducing the rotor blade entry angle into the soil from 45° to 30° made it possible to raise the second soil feed of the loosening and separating machine by more than 40 times. The width of rotor ripper practically does not affect the transporting capacity. Changing the angle of ripper entry into the soil allowed obtaining of the required transporting capacity of ripping and separating machine without changing the rotor design. Practical significance of the study lies in the possibility of increasing the work productivity without increasing its energy indicators.","PeriodicalId":43089,"journal":{"name":"Acta Technologica Agriculturae","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Technologica Agriculturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ata-2022-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Currently, loosening and separating machines that combine the operations of crumbling and separating of soil according to the treated layer depth have come to the forefront. Interaction of the rotor blade of these machines with the soil comprises three stages: soil core formation; steady movement; and dumping of soil from the separating grid. The article determined the direction and magnitude of soil displacement, parameters and shape of the furrow formed after the ripper passage. Based on theoretical research, a mathematical model of the interaction of working bodies with the soil was developed. The initial data were obtained experimentally, and the model was justified. As a result, it was found that the supplied soil layer thickness and the fracture angle of ripper have the greatest influence on the transporting capacity of rotor ripper. Reducing the rotor blade entry angle into the soil from 45° to 30° made it possible to raise the second soil feed of the loosening and separating machine by more than 40 times. The width of rotor ripper practically does not affect the transporting capacity. Changing the angle of ripper entry into the soil allowed obtaining of the required transporting capacity of ripping and separating machine without changing the rotor design. Practical significance of the study lies in the possibility of increasing the work productivity without increasing its energy indicators.
耕土松动分离机转子输送能力计算
目前,将土壤按处理层深度破碎分离相结合的松脱分离机已经走到了前沿。这些机器的转子叶片与土壤的相互作用包括三个阶段:土芯的形成;稳定的运动;从分离网格中倾倒土壤。本文确定了土的位移方向、位移幅度、开膛机通道后形成的沟槽的参数和形状。在理论研究的基础上,建立了工体与土体相互作用的数学模型。实验得到了初步数据,并对模型进行了验证。结果表明,供给土层厚度和撕裂器断裂角度对转子撕裂器的输送能力影响最大。将转子叶片入土角从45°减小到30°,使松分机的二次进土量提高了40倍以上。转子撕裂器的宽度实际上不影响输送能力。在不改变转子设计的情况下,改变撕裂器进入土壤的角度可以获得所需的撕裂和分离机的输送能力。本研究的现实意义在于在不增加劳动生产率能量指标的情况下提高劳动生产率的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Technologica Agriculturae
Acta Technologica Agriculturae AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
2.50
自引率
28.60%
发文量
32
审稿时长
18 weeks
期刊介绍: Acta Technologica Agriculturae is an international scientific double-blind peer reviewed journal focused on agricultural engineering. The journal is multidisciplinary and publishes original research and review papers in engineering, agricultural and biological sciences, and materials science. Aims and Scope Areas of interest include but are not limited to: agricultural and biosystems engineering; machines and mechanization of agricultural production; information and electrical technologies; agro-product and food processing engineering; physical, chemical and biological changes in the soil caused by tillage and field traffic, soil working machinery and terramechanics; renewable energy sources and bioenergy; rural buildings; related issues from applied physics and chemistry, ecology, economy and energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信