{"title":"Astrophysical existential threats: a comparative analysis","authors":"Niamh Burns, William T. Parsons","doi":"10.1017/s1473550422000167","DOIUrl":null,"url":null,"abstract":"\n Using a simple, coarse-grained Poisson process model, we calculate – for seven types of astrophysical catastrophe – both their individual and combined threat to complex lifeforms (extraterrestrial intelligences (ETIs)) throughout the Milky Way Galaxy. In terms of cumulative effects, we calculate that ETIs are likely to be astrophysically driven extinct on timescales of roughly once every 100 million years. In terms of comparative effects, large bolide impactors represent the most significant type of astrophysical contribution to the galaxy-wide debilitation of hypothesized ETI civilizations. Nonetheless, we conclude that astrophysical existential threats – whether taken singly or in combination – are likely insufficient, alone, to explain the Fermi Paradox. Astrophysical catastrophes, while both deadly and ubiquitous, do not appear to be frequent enough to wipe out every species in the Galaxy before they can attain or utilize spacefaring status.","PeriodicalId":13879,"journal":{"name":"International Journal of Astrobiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s1473550422000167","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using a simple, coarse-grained Poisson process model, we calculate – for seven types of astrophysical catastrophe – both their individual and combined threat to complex lifeforms (extraterrestrial intelligences (ETIs)) throughout the Milky Way Galaxy. In terms of cumulative effects, we calculate that ETIs are likely to be astrophysically driven extinct on timescales of roughly once every 100 million years. In terms of comparative effects, large bolide impactors represent the most significant type of astrophysical contribution to the galaxy-wide debilitation of hypothesized ETI civilizations. Nonetheless, we conclude that astrophysical existential threats – whether taken singly or in combination – are likely insufficient, alone, to explain the Fermi Paradox. Astrophysical catastrophes, while both deadly and ubiquitous, do not appear to be frequent enough to wipe out every species in the Galaxy before they can attain or utilize spacefaring status.
期刊介绍:
International Journal of Astrobiology is the peer-reviewed forum for practitioners in this exciting interdisciplinary field. Coverage includes cosmic prebiotic chemistry, planetary evolution, the search for planetary systems and habitable zones, extremophile biology and experimental simulation of extraterrestrial environments, Mars as an abode of life, life detection in our solar system and beyond, the search for extraterrestrial intelligence, the history of the science of astrobiology, as well as societal and educational aspects of astrobiology. Occasionally an issue of the journal is devoted to the keynote plenary research papers from an international meeting. A notable feature of the journal is the global distribution of its authors.