On turbulent flow and aerodynamic noise of generic side-view mirror with cell-centred finite difference method

IF 1.5 4区 工程技术 Q3 MECHANICS
Fei Liao
{"title":"On turbulent flow and aerodynamic noise of generic side-view mirror with cell-centred finite difference method","authors":"Fei Liao","doi":"10.1080/14685248.2022.2037621","DOIUrl":null,"url":null,"abstract":"This paper investigates the turbulent flow and aerodynamic noise of a half-cylinder body mounted on a flat plate at using high-order cell-centred finite difference method with delayed detached-eddy simulation (DDES) and large-eddy simulation (LES). Transient flow patterns from the two simulations are found to be very different in consideration of the small-scale structures. The profiles of mean velocity, resolved turbulent kinetic energy and resolved Reynolds shear stress are found to be similar among all the simulations, indicating mean quantities are relatively insensitive to turbulence modelling and grid resolution. The power spectra density of the pressure fluctuations show that LES is more capable of resolving energies in high-frequency range than DDES. After computing the normalised wavenumber-frequency spectra of fluctuating pressure on the window, we further carried out the wavenumber-frequency decomposition to separate the acoustic and the hydrodynamic components from the pressure fluctuations. The energy distribution shows that the acoustic energy has a much slower decaying rate in the high-frequency range than the hydrodynamic energy. In addition, the space-averaged sound pressure levels of pressure fluctuations on the window indicate that the present simulation with a high-order method is able to improve the accuracy in predicting pressure spectra. Finally, we carry out proper orthogonal decomposition to extract the dominating features of the decomposed acoustic and hydrodynamic components of pressure fluctuation. Patterns of multi-scale turbulence in hydrodynamic modes and propagating wavefronts of cylinder shape in acoustic modes are identified. The present research indicates that a relatively coarse grid is still capable of resolving fluctuating quantities of energy-containing structures, and LES is suggested against DDES when near-wall aerodynamic noise is the main concern.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2022.2037621","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the turbulent flow and aerodynamic noise of a half-cylinder body mounted on a flat plate at using high-order cell-centred finite difference method with delayed detached-eddy simulation (DDES) and large-eddy simulation (LES). Transient flow patterns from the two simulations are found to be very different in consideration of the small-scale structures. The profiles of mean velocity, resolved turbulent kinetic energy and resolved Reynolds shear stress are found to be similar among all the simulations, indicating mean quantities are relatively insensitive to turbulence modelling and grid resolution. The power spectra density of the pressure fluctuations show that LES is more capable of resolving energies in high-frequency range than DDES. After computing the normalised wavenumber-frequency spectra of fluctuating pressure on the window, we further carried out the wavenumber-frequency decomposition to separate the acoustic and the hydrodynamic components from the pressure fluctuations. The energy distribution shows that the acoustic energy has a much slower decaying rate in the high-frequency range than the hydrodynamic energy. In addition, the space-averaged sound pressure levels of pressure fluctuations on the window indicate that the present simulation with a high-order method is able to improve the accuracy in predicting pressure spectra. Finally, we carry out proper orthogonal decomposition to extract the dominating features of the decomposed acoustic and hydrodynamic components of pressure fluctuation. Patterns of multi-scale turbulence in hydrodynamic modes and propagating wavefronts of cylinder shape in acoustic modes are identified. The present research indicates that a relatively coarse grid is still capable of resolving fluctuating quantities of energy-containing structures, and LES is suggested against DDES when near-wall aerodynamic noise is the main concern.
用单元中心有限差分法研究通用侧视镜的湍流和气动噪声
本文采用高阶单元中心有限差分法,结合延迟分离涡模拟(DDES)和大涡模拟(LES),研究了平板上半圆柱体的湍流和气动噪声。考虑到小规模结构,两种模拟的瞬态流动模式非常不同。在所有模拟中,平均速度、解析湍流动能和解析雷诺剪切应力的分布相似,表明平均量对湍流建模和网格分辨率相对不敏感。压力波动的功率谱密度表明,LES比DDES更能分辨高频范围内的能量。在计算了窗口上波动压力的归一化波数频谱后,我们进一步进行了波数频率分解,以将声学和流体动力学分量从压力波动中分离出来。能量分布表明,声能在高频范围内的衰减率比水动力能慢得多。此外,窗口上压力波动的空间平均声压级表明,采用高阶方法进行的模拟能够提高压力谱的预测精度。最后,我们进行适当的正交分解,提取分解后的压力波动的声学和水动力分量的主导特征。识别了流体动力学模式下的多尺度湍流模式和声学模式下的圆柱形传播波前。目前的研究表明,相对粗糙的网格仍然能够解决含能结构的波动量,当近壁空气动力学噪声是主要问题时,建议使用LES来对抗DDES。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信