Real Kaehler submanifolds in codimension up to four

IF 1.3 2区 数学 Q1 MATHEMATICS
S. Chión, M. Dajczer
{"title":"Real Kaehler submanifolds in codimension up to four","authors":"S. Chión, M. Dajczer","doi":"10.4171/rmi/1427","DOIUrl":null,"url":null,"abstract":"Let $f\\colon M^{2n}\\to\\mathbb{R}^{2n+4}$ be an isometric immersion of a Kaehler manifold of complex dimension $n\\geq 5$ into Euclidean space with complex rank at least $5$ everywhere. Our main result is that, along each connected component of an open dense subset of $M^{2n}$, either $f$ is holomorphic in $\\mathbb{R}^{2n+4}\\cong\\mathbb{C}^{n+2}$ or it is in a unique way a composition $f=F\\circ h$ of isometric immersions. In the latter case, we have that $h\\colon M^{2n}\\to N^{2n+2}$ is holomorphic and $F\\colon N^{2n+2}\\to\\mathbb{R}^{2n+4}$ belongs to the class, by now quite well understood, of non-holomorphic Kaehler submanifold in codimension two. Moreover, the submanifold $F$ is minimal if and only if $f$ is minimal.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1427","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $f\colon M^{2n}\to\mathbb{R}^{2n+4}$ be an isometric immersion of a Kaehler manifold of complex dimension $n\geq 5$ into Euclidean space with complex rank at least $5$ everywhere. Our main result is that, along each connected component of an open dense subset of $M^{2n}$, either $f$ is holomorphic in $\mathbb{R}^{2n+4}\cong\mathbb{C}^{n+2}$ or it is in a unique way a composition $f=F\circ h$ of isometric immersions. In the latter case, we have that $h\colon M^{2n}\to N^{2n+2}$ is holomorphic and $F\colon N^{2n+2}\to\mathbb{R}^{2n+4}$ belongs to the class, by now quite well understood, of non-holomorphic Kaehler submanifold in codimension two. Moreover, the submanifold $F$ is minimal if and only if $f$ is minimal.
四维以下的实Kaehler子流形
设$f\colon M^{2n}\to\mathbb{R}^{2n+4}$为复维数$n\geq 5$的Kaehler流形在欧几里得空间中的等距浸入,其复秩处处至少为$5$。我们的主要结果是,沿着$M^{2n}$的开放密集子集的每个连接分量,$f$在$\mathbb{R}^{2n+4}\cong\mathbb{C}^{n+2}$中要么是全纯的,要么是以一种独特的方式组成$f=F\circ h$的等距浸入。在后一种情况下,我们知道$h\colon M^{2n}\to N^{2n+2}$是全纯的,并且$F\colon N^{2n+2}\to\mathbb{R}^{2n+4}$属于,现在已经很好理解的一类,余维2中的非全纯Kaehler子流形。此外,子流形$F$是最小的当且仅当$f$是最小的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信