{"title":"Blow-up criteria below scaling for defocusing energy-supercritical NLS and quantitative global scattering bounds","authors":"Aynur Bulut","doi":"10.1353/ajm.2023.0013","DOIUrl":null,"url":null,"abstract":"We establish quantitative blow-up criteria below the scaling threshold for radially symmetric solutions to the defocusing nonlinear Schrodinger equation with nonlinearity $|u|^6u$. This provides to our knowledge the first generic results distinguishing potential blow-up solutions of the defocusing equation from many of the known examples of blow-up in the focusing case. Our main tool is a quantitative version of a result showing that uniform bounds on $L^2$-based critical Sobolev norms imply scattering estimates. \nAs another application of our techniques, we establish a variant which allows for slow growth in the critical norm. We show that if the critical Sobolev norm on compact time intervals is controlled by a slowly growing quantity depending on the Stricharz norm, then the solution can be extended globally in time, with a corresponding scattering estimate.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.0013","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
We establish quantitative blow-up criteria below the scaling threshold for radially symmetric solutions to the defocusing nonlinear Schrodinger equation with nonlinearity $|u|^6u$. This provides to our knowledge the first generic results distinguishing potential blow-up solutions of the defocusing equation from many of the known examples of blow-up in the focusing case. Our main tool is a quantitative version of a result showing that uniform bounds on $L^2$-based critical Sobolev norms imply scattering estimates.
As another application of our techniques, we establish a variant which allows for slow growth in the critical norm. We show that if the critical Sobolev norm on compact time intervals is controlled by a slowly growing quantity depending on the Stricharz norm, then the solution can be extended globally in time, with a corresponding scattering estimate.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.