{"title":"A New Transport Distance and Its Associated Ricci Curvature of Hypergraphs","authors":"Tomoya Akamatsu","doi":"10.1515/agms-2022-0135","DOIUrl":null,"url":null,"abstract":"Abstract The coarse Ricci curvature of graphs introduced by Ollivier as well as its modification by Lin–Lu– Yau have been studied from various aspects. In this paper, we propose a new transport distance appropriate for hypergraphs and study a generalization of Lin–Lu–Yau type curvature of hypergraphs. As an application, we derive a Bonnet–Myers type estimate for hypergraphs under a lower Ricci curvature bound associated with our transport distance. We remark that our transport distance is new even for graphs and worthy of further study.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"10 1","pages":"90 - 108"},"PeriodicalIF":0.9000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0135","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract The coarse Ricci curvature of graphs introduced by Ollivier as well as its modification by Lin–Lu– Yau have been studied from various aspects. In this paper, we propose a new transport distance appropriate for hypergraphs and study a generalization of Lin–Lu–Yau type curvature of hypergraphs. As an application, we derive a Bonnet–Myers type estimate for hypergraphs under a lower Ricci curvature bound associated with our transport distance. We remark that our transport distance is new even for graphs and worthy of further study.
期刊介绍:
Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed.
AGMS is devoted to the publication of results on these and related topics:
Geometric inequalities in metric spaces,
Geometric measure theory and variational problems in metric spaces,
Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density,
Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds.
Geometric control theory,
Curvature in metric and length spaces,
Geometric group theory,
Harmonic Analysis. Potential theory,
Mass transportation problems,
Quasiconformal and quasiregular mappings. Quasiconformal geometry,
PDEs associated to analytic and geometric problems in metric spaces.