Orhan Tuǧ, E. Malkowsky, B. Hazarika, Taja Yaying
{"title":"On the New Generalized Hahn Sequence Space <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msubsup>\n <mrow>\n <mi>h</mi>\n </mrow>\n <mrow>\n <mi>d</mi","authors":"Orhan Tuǧ, E. Malkowsky, B. Hazarika, Taja Yaying","doi":"10.1155/2022/6832559","DOIUrl":null,"url":null,"abstract":"<jats:p>In this article, we define the new generalized Hahn sequence space <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <msubsup>\n <mrow>\n <mi>h</mi>\n </mrow>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>d</mi>\n <mo>=</mo>\n <msubsup>\n <mrow>\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mo>∞</mo>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula> is monotonically increasing sequence with <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>≠</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula> for all <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>k</mi>\n <mo>∈</mo>\n <mi>ℕ</mi>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mn>1</mn>\n <mo><</mo>\n <mi>p</mi>\n <mo><</mo>\n <mo>∞</mo>\n </math>\n </jats:inline-formula>. Then, we prove some topological properties and calculate the <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>α</mi>\n <mo>−</mo>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mi>β</mi>\n <mo>−</mo>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>γ</mi>\n <mo>−</mo>\n </math>\n </jats:inline-formula>duals of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <msubsup>\n <mrow>\n <mi>h</mi>\n </mrow>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula>. Furthermore, we characterize the new matrix classes <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <msub>\n <mrow>\n <mi>h</mi>\n </mrow>\n <mrow>\n <mi>d</mi>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>λ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\">\n <mi>λ</mi>\n <mo>=</mo>\n <mfenced open=\"{\" close=\"}\">\n <mrow>\n <mi>b</mi>\n <mi>v</mi>\n <mo>,</mo>\n <mi>b</mi>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>b</mi>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mo>∞</mo>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>b</mi>\n <mi>s</mi>\n <mo>,</mo>\n <mi>c</mi>\n <mi>s</mi>\n <mo>,</mo>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>μ</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>h</mi>\n </mrow>\n <mrow>\n <mi>d</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, where <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\">\n <mi>μ</mi>\n <mo>=</mo>\n <mfenced open=\"{\" close=\"}\">\n <mrow>\n <mi>b</mi>\n <mi>v</mi>\n <mo>,</mo>\n <mi>b</mi>\n <msub>\n <mrow>\n <mi>v</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>b</mi>\n <mi>s</mi>\n <mo>,</mo>\n <mi>c</mi>\n <msub>\n <mrow>\n <mi>s</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>c</mi>\n <mi>s</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. In the last section, we prove the necessary and sufficient conditions of the matrix transformations from <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\">\n <msubsup>\n <mrow>\n <mi>h</mi>\n </mrow>\n <mrow>\n <mi>d</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula> into <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\">\n <mi>λ</mi>\n ","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6832559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1