Elisabeth Wybo, Alvise Bastianello, M. Aidelsburger, I. Bloch, M. Knap
{"title":"Preparing and Analyzing Solitons in the Sine-Gordon Model with Quantum Gas Microscopes","authors":"Elisabeth Wybo, Alvise Bastianello, M. Aidelsburger, I. Bloch, M. Knap","doi":"10.1103/PRXQuantum.4.030308","DOIUrl":null,"url":null,"abstract":"The sine-Gordon model emerges as a low-energy theory in a plethora of quantum many-body systems. Here, we theoretically investigate tunnel-coupled Bose-Hubbard chains with strong repulsive interactions as a realization of the sine-Gordon model deep in the quantum regime. We propose protocols for quantum gas microscopes of ultracold atoms to prepare and analyze solitons, that are the fundamental topological excitations of the emergent sine-Gordon theory. With numerical simulations based on matrix product states we characterize the preparation and detection protocols and discuss the experimental requirements.","PeriodicalId":74587,"journal":{"name":"PRX quantum : a Physical Review journal","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX quantum : a Physical Review journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PRXQuantum.4.030308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 7
Abstract
The sine-Gordon model emerges as a low-energy theory in a plethora of quantum many-body systems. Here, we theoretically investigate tunnel-coupled Bose-Hubbard chains with strong repulsive interactions as a realization of the sine-Gordon model deep in the quantum regime. We propose protocols for quantum gas microscopes of ultracold atoms to prepare and analyze solitons, that are the fundamental topological excitations of the emergent sine-Gordon theory. With numerical simulations based on matrix product states we characterize the preparation and detection protocols and discuss the experimental requirements.