Uniformly convergent fitted operator method for singularly perturbed delay differential equations

IF 1.1 Q2 MATHEMATICS, APPLIED
M. Woldaregay, H. Debela, G. Duressa
{"title":"Uniformly convergent fitted operator method for singularly perturbed delay differential equations","authors":"M. Woldaregay, H. Debela, G. Duressa","doi":"10.22034/CMDE.2021.41166.1789","DOIUrl":null,"url":null,"abstract":"This paper deals with numerical treatment of singularly perturbed delay differential equations having delay on first derivative term. The solution of the considered problem exhibits boundary layer behaviour on left or right side of the domain depending on the sign of the convective term. The term with the delay is approximated using Taylor series approximation, resulting to asymptotically equivalent singularly perturbed boundary value problem. Uniformly convergent numerical scheme is developed using exponentially fitted finite difference method. The stability of the scheme is investigated using solution bound. The uniform convergence of the scheme is discussed and proved. Numerical examples are considered to validate the theoretical analysis.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.41166.1789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with numerical treatment of singularly perturbed delay differential equations having delay on first derivative term. The solution of the considered problem exhibits boundary layer behaviour on left or right side of the domain depending on the sign of the convective term. The term with the delay is approximated using Taylor series approximation, resulting to asymptotically equivalent singularly perturbed boundary value problem. Uniformly convergent numerical scheme is developed using exponentially fitted finite difference method. The stability of the scheme is investigated using solution bound. The uniform convergence of the scheme is discussed and proved. Numerical examples are considered to validate the theoretical analysis.
奇异摄动时滞微分方程的一致收敛拟合算子方法
本文研究了一阶导数项上有时滞的奇摄动时滞微分方程的数值处理。所考虑问题的解根据对流项的符号在域的左侧或右侧显示边界层行为。利用泰勒级数逼近方法对含时滞项进行逼近,得到渐近等价奇摄动边值问题。采用指数拟合有限差分法,给出了均匀收敛的数值格式。利用解界研究了该方案的稳定性。讨论并证明了该方案的一致收敛性。数值算例验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信