{"title":"Extensions of the d’Alembert formulae to the half line and the finite interval obtained via the unified transform","authors":"A. S. Fokas, K. Kalimeris","doi":"10.1093/imamat/hxac030","DOIUrl":null,"url":null,"abstract":"\n We derive the solution of the one dimensional wave equation for the Dirichlet and Robin initial-boundary value problems (IBVPs) formulated on the half line and the finite interval, with nonhomogeneous boundary conditions. Although explicit formulas already exist for these problems, the unified transform method provides a convenient framework for deriving different representations of the solutions for these and other types of IBVPs. Specifically, it provides solution formulas in the Fourier space or solutions which constitute the extension of the classical formula of d’Alembert of the initial value problem on the full line. We also derive the solution of the forced wave equation on the half line.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxac030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
We derive the solution of the one dimensional wave equation for the Dirichlet and Robin initial-boundary value problems (IBVPs) formulated on the half line and the finite interval, with nonhomogeneous boundary conditions. Although explicit formulas already exist for these problems, the unified transform method provides a convenient framework for deriving different representations of the solutions for these and other types of IBVPs. Specifically, it provides solution formulas in the Fourier space or solutions which constitute the extension of the classical formula of d’Alembert of the initial value problem on the full line. We also derive the solution of the forced wave equation on the half line.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.