Metformin Finds Its New Molecular Targets

E. Ros
{"title":"Metformin Finds Its New Molecular Targets","authors":"E. Ros","doi":"10.20455/ros.2022.n.803","DOIUrl":null,"url":null,"abstract":"Metformin is a widely used antidiabetic drug. Studies over the past year have identified multiple novel molecular targets and pathways that metformin may act on to exert its beneficial effects in treating diabetes and potentially other disorders involving dysregulated inflammation. These newly found targets include mitochondrial complex I, Nrf2-SIRT3 signaling axis, PEN2, and lysosomal proton pump v-ATPase.\n(First online: March 1, 2022)\nREFERENCES\n\nFlory J, Lipska K. Metformin in 2019. JAMA 2019; 321(19):1926–7. doi: https://dx.doi.org/10.1001/jama.2019.3805\nXian H, Liu Y, Rundberg Nilsson A, Gatchalian R, Crother TR, Tourtellotte WG, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 2021; 54(7):1463–77 e11. doi: https://dx.doi.org/10.1016/j.immuni.2021.05.004\nMadiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510(7506):542–6. doi: https://dx.doi.org/10.1038/nature13270\nZhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8):1167–74. doi: https://dx.doi.org/10.1172/JCI13505\nGao P, You M, Li L, Zhang Q, Fang X, Wei X, et al. Salt-Induced hepatic inflammatory memory contributes to cardiovascular damage through epigenetic modulation of SIRT3. Circulation 2022; 145(5):375–91. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600\nMa T, Tian X, Zhang B, Li M, Wang Y, Yang C, et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 2022. doi: https://dx.doi.org/10.1038/s41586-022-04431-8\n","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive oxygen species (Apex, N.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20455/ros.2022.n.803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metformin is a widely used antidiabetic drug. Studies over the past year have identified multiple novel molecular targets and pathways that metformin may act on to exert its beneficial effects in treating diabetes and potentially other disorders involving dysregulated inflammation. These newly found targets include mitochondrial complex I, Nrf2-SIRT3 signaling axis, PEN2, and lysosomal proton pump v-ATPase. (First online: March 1, 2022) REFERENCES Flory J, Lipska K. Metformin in 2019. JAMA 2019; 321(19):1926–7. doi: https://dx.doi.org/10.1001/jama.2019.3805 Xian H, Liu Y, Rundberg Nilsson A, Gatchalian R, Crother TR, Tourtellotte WG, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 2021; 54(7):1463–77 e11. doi: https://dx.doi.org/10.1016/j.immuni.2021.05.004 Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 2014; 510(7506):542–6. doi: https://dx.doi.org/10.1038/nature13270 Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8):1167–74. doi: https://dx.doi.org/10.1172/JCI13505 Gao P, You M, Li L, Zhang Q, Fang X, Wei X, et al. Salt-Induced hepatic inflammatory memory contributes to cardiovascular damage through epigenetic modulation of SIRT3. Circulation 2022; 145(5):375–91. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600 Ma T, Tian X, Zhang B, Li M, Wang Y, Yang C, et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 2022. doi: https://dx.doi.org/10.1038/s41586-022-04431-8
二甲双胍发现新的分子靶点
二甲双胍是一种应用广泛的抗糖尿病药物。过去一年的研究已经确定了多种新的分子靶点和途径,二甲双胍可能会对其发挥作用,在治疗糖尿病和其他可能涉及炎症失调的疾病方面发挥有益作用。这些新发现的靶标包括线粒体复合体I、Nrf2-SIRT3信号轴、PEN2和溶酶体质子泵v-ATP酶。(首次在线:2022年3月1日)参考文献Flory J,Lipska K.二甲双胍在2019年。JAMA 2019;321(19):1926–7.doi:https://dx.doi.org/10.1001/jama.2019.3805XianH,Liu Y,Rundberg Nilsson A,Gatchalian R,Crother TR,Tourtellotte WG等。二甲双胍对线粒体ATP和DNA合成的抑制消除了NLRP3炎症小体激活和肺部炎症。豁免2021;54(7):1463–77 e11。doi:https://dx.doi.org/10.1016/j.immuni.2021.05.004MadirajuAK,Erion DM,Rahimi Y,Zhang XM,Braddock DT,Albright RA等。二甲双胍通过抑制线粒体甘油磷酸脱氢酶来抑制糖异生。Nature 2014;510(7506):542–6.doi:https://dx.doi.org/10.1038/nature13270ZhouG,Myers R,Li Y,Chen Y,Shen X,Fenyk Melody J,等。AMP活化蛋白激酶在二甲双胍作用机制中的作用。《临床投资杂志》2001;108(8):1167-74.doi:https://dx.doi.org/10.1172/JCI13505GaoP,游M,李L,张Q,方X,魏X,等。盐诱导的肝脏炎症记忆通过SIRT3的表观遗传学调节导致心血管损伤。循环2022;145(5):375–91.doi:https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600MaT,Tian X,Zhang B,Li M,Wang Y,Yang C,et al.低剂量二甲双胍通过PEN2靶向溶酶体AMPK通路。自然2022。doi:https://dx.doi.org/10.1038/s41586-022-04431-8
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信