{"title":"Fuzzy Rank Based Parallel Online Feature Selection Method using Multiple Sliding Windows","authors":"B. Venkatesh, J. Anuradha","doi":"10.1515/comp-2020-0169","DOIUrl":null,"url":null,"abstract":"Abstract Nowadays, in real-world applications, the dimensions of data are generated dynamically, and the traditional batch feature selection methods are not suitable for streaming data. So, online streaming feature selection methods gained more attention but the existing methods had demerits like low classification accuracy, fails to avoid redundant and irrelevant features, and a higher number of features selected. In this paper, we propose a parallel online feature selection method using multiple sliding-windows and fuzzy fast-mRMR feature selection analysis, which is used for selecting minimum redundant and maximum relevant features, and also overcomes the drawbacks of existing online streaming feature selection methods. To increase the performance speed of the proposed method parallel processing is used. To evaluate the performance of the proposed online feature selection method k-NN, SVM, and Decision Tree Classifiers are used and compared against the state-of-the-art online feature selection methods. Evaluation metrics like Accuracy, Precision, Recall, F1-Score are used on benchmark datasets for performance analysis. From the experimental analysis, it is proved that the proposed method has achieved more than 95% accuracy for most of the datasets and performs well over other existing online streaming feature selection methods and also, overcomes the drawbacks of the existing methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/comp-2020-0169","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2020-0169","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Nowadays, in real-world applications, the dimensions of data are generated dynamically, and the traditional batch feature selection methods are not suitable for streaming data. So, online streaming feature selection methods gained more attention but the existing methods had demerits like low classification accuracy, fails to avoid redundant and irrelevant features, and a higher number of features selected. In this paper, we propose a parallel online feature selection method using multiple sliding-windows and fuzzy fast-mRMR feature selection analysis, which is used for selecting minimum redundant and maximum relevant features, and also overcomes the drawbacks of existing online streaming feature selection methods. To increase the performance speed of the proposed method parallel processing is used. To evaluate the performance of the proposed online feature selection method k-NN, SVM, and Decision Tree Classifiers are used and compared against the state-of-the-art online feature selection methods. Evaluation metrics like Accuracy, Precision, Recall, F1-Score are used on benchmark datasets for performance analysis. From the experimental analysis, it is proved that the proposed method has achieved more than 95% accuracy for most of the datasets and performs well over other existing online streaming feature selection methods and also, overcomes the drawbacks of the existing methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.