Query-based learning of acyclic conditional preference networks from contradictory preferences

IF 2.3 Q3 MANAGEMENT
Fabien Labernia , Florian Yger , Brice Mayag , Jamal Atif
{"title":"Query-based learning of acyclic conditional preference networks from contradictory preferences","authors":"Fabien Labernia ,&nbsp;Florian Yger ,&nbsp;Brice Mayag ,&nbsp;Jamal Atif","doi":"10.1007/s40070-017-0070-3","DOIUrl":null,"url":null,"abstract":"<div><p>Conditional preference networks (CP-nets) provide a compact and intuitive graphical tool to represent the preferences of a user. However, learning such a structure is known to be a difficult problem due to its combinatorial nature. We propose, in this paper, a new, efficient, and robust query-based learning algorithm for acyclic CP-nets. In particular, our algorithm takes into account the contradictions between multiple users’ preferences by searching in a principled way the variables that affect the preferences. We provide complexity results of the algorithm, and demonstrate its efficiency through an empirical evaluation on synthetic and on real databases.</p></div>","PeriodicalId":44104,"journal":{"name":"EURO Journal on Decision Processes","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40070-017-0070-3","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Decision Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2193943821000790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 5

Abstract

Conditional preference networks (CP-nets) provide a compact and intuitive graphical tool to represent the preferences of a user. However, learning such a structure is known to be a difficult problem due to its combinatorial nature. We propose, in this paper, a new, efficient, and robust query-based learning algorithm for acyclic CP-nets. In particular, our algorithm takes into account the contradictions between multiple users’ preferences by searching in a principled way the variables that affect the preferences. We provide complexity results of the algorithm, and demonstrate its efficiency through an empirical evaluation on synthetic and on real databases.

基于查询的基于矛盾偏好的无循环条件偏好网络学习
条件偏好网络(CP-nets)提供了一种简洁直观的图形工具来表示用户的偏好。然而,由于其组合的性质,学习这样的结构是一个难题。在本文中,我们提出了一种新的、高效的、鲁棒的基于查询的非循环cp -net学习算法。特别是,我们的算法通过有原则地搜索影响偏好的变量,考虑了多个用户偏好之间的矛盾。我们给出了算法的复杂度结果,并通过在合成数据库和真实数据库上的经验评估证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
10.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信