{"title":"Groupoid algebras as covariance algebras","authors":"L. O. Clark, James Fletcher","doi":"10.7900/jot.2019aug22.2266","DOIUrl":null,"url":null,"abstract":"Suppose G is a second-countable locally compact Hausdorff \\'{e}tale groupoid, G is a discrete group containing a unital subsemigroup P, and c:G→G is a continuous cocycle. We derive conditions on the cocycle such that the reduced groupoid C∗-algebra C∗r(G) may be realised as the covariance algebra of a product system over P with coefficient algebra C∗r(c−1(e)). When (G,P) is a quasi-lattice ordered group, we also derive conditions that allow C∗r(G) to be realised as the Cuntz--Nica--Pimsner algebra of a compactly aligned product system.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019aug22.2266","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Suppose G is a second-countable locally compact Hausdorff \'{e}tale groupoid, G is a discrete group containing a unital subsemigroup P, and c:G→G is a continuous cocycle. We derive conditions on the cocycle such that the reduced groupoid C∗-algebra C∗r(G) may be realised as the covariance algebra of a product system over P with coefficient algebra C∗r(c−1(e)). When (G,P) is a quasi-lattice ordered group, we also derive conditions that allow C∗r(G) to be realised as the Cuntz--Nica--Pimsner algebra of a compactly aligned product system.
期刊介绍:
The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.