Implementing a non-local means method to CTA data of aortic dissection

M. Fitria, Cosmin Adrian Morariu, J. Pauli, Ramzi Adriman
{"title":"Implementing a non-local means method to CTA data of aortic dissection","authors":"M. Fitria, Cosmin Adrian Morariu, J. Pauli, Ramzi Adriman","doi":"10.14710/JTSISKOM.2021.14125","DOIUrl":null,"url":null,"abstract":"It is necessary to conserve important information, like edges, details, and textures, in CT aortic dissection images, as this helps the radiologist examine and diagnose the disease. Hence, a less noisy image is required to support medical experts in performing better diagnoses. In this work, the non-local means (NLM) method is conducted to minimize the noise in CT images of aortic dissection patients as a preprocessing step to produce accurate aortic segmentation results. The method is implemented in an existing segmentation system using six different kernel functions, and the evaluation is done by assessing DSC, precision, and recall of segmentation results. Furthermore, the visual quality of denoised images is also taken into account to be determined. Besides, a comparative analysis between NLM and other denoising methods is done in this experiment. The results showed that NLM yields encouraging segmentation results, even though the visualization of denoised images is unacceptable. Applying the NLM algorithm with the flat function provides the highest DSC, precision, and recall values of 0.937101, 0.954835, and 0.920517 consecutively.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2021.14125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is necessary to conserve important information, like edges, details, and textures, in CT aortic dissection images, as this helps the radiologist examine and diagnose the disease. Hence, a less noisy image is required to support medical experts in performing better diagnoses. In this work, the non-local means (NLM) method is conducted to minimize the noise in CT images of aortic dissection patients as a preprocessing step to produce accurate aortic segmentation results. The method is implemented in an existing segmentation system using six different kernel functions, and the evaluation is done by assessing DSC, precision, and recall of segmentation results. Furthermore, the visual quality of denoised images is also taken into account to be determined. Besides, a comparative analysis between NLM and other denoising methods is done in this experiment. The results showed that NLM yields encouraging segmentation results, even though the visualization of denoised images is unacceptable. Applying the NLM algorithm with the flat function provides the highest DSC, precision, and recall values of 0.937101, 0.954835, and 0.920517 consecutively.
主动脉夹层CTA数据的非局部均值方法实现
有必要在CT主动脉夹层图像中保留重要信息,如边缘、细节和纹理,因为这有助于放射科医生检查和诊断疾病。因此,需要噪声较小的图像来支持医学专家进行更好的诊断。在这项工作中,采用非局部均值(NLM)方法来最小化主动脉夹层患者CT图像中的噪声,作为产生准确主动脉分割结果的预处理步骤。该方法在现有的分割系统中使用六种不同的核函数实现,并通过评估DSC、精度和分割结果的召回率来进行评估。此外,还考虑去噪图像的视觉质量以进行确定。此外,本实验还对NLM和其他去噪方法进行了比较分析。结果表明,NLM产生了令人鼓舞的分割结果,即使去噪图像的可视化是不可接受的。应用具有平坦函数的NLM算法可连续提供0.937101、0.954835和0.920517的最高DSC、精度和召回值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信