Optimization of the anisotropic Cheeger constant with respect to the anisotropy

Pub Date : 2022-06-15 DOI:10.4153/S0008439523000152
E. Parini, Giorgio Saracco
{"title":"Optimization of the anisotropic Cheeger constant with respect to the anisotropy","authors":"E. Parini, Giorgio Saracco","doi":"10.4153/S0008439523000152","DOIUrl":null,"url":null,"abstract":"Abstract Given an open, bounded set \n$\\Omega $\n in \n$\\mathbb {R}^N$\n , we consider the minimization of the anisotropic Cheeger constant \n$h_K(\\Omega )$\n with respect to the anisotropy K, under a volume constraint on the associated unit ball. In the planar case, under the assumption that K is a convex, centrally symmetric body, we prove the existence of a minimizer. Moreover, if \n$\\Omega $\n is a ball, we show that the optimal anisotropy K is not a ball and that, among all regular polygons, the square provides the minimal value.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S0008439523000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Given an open, bounded set $\Omega $ in $\mathbb {R}^N$ , we consider the minimization of the anisotropic Cheeger constant $h_K(\Omega )$ with respect to the anisotropy K, under a volume constraint on the associated unit ball. In the planar case, under the assumption that K is a convex, centrally symmetric body, we prove the existence of a minimizer. Moreover, if $\Omega $ is a ball, we show that the optimal anisotropy K is not a ball and that, among all regular polygons, the square provides the minimal value.
分享
查看原文
各向异性Cheeger常数的各向异性优化
摘要给定$\mathbb{R}^N$中的一个开放有界集$\Omega$,我们考虑在相关单位球上的体积约束下,各向异性Cheeger常数$h_K(\Omega)$相对于各向异性K的最小化。在平面情况下,假设K是一个凸的中心对称体,我们证明了极小值的存在性。此外,如果$\Omega$是球,我们证明了最佳各向异性K不是球,并且在所有正多边形中,正方形提供了最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信