Frank van Oosterhout, Said Yasseri, N. Noyma, V. Huszar, Marcelo Manzi Marinho, M. Mucci, G. Waajen, M. Lürling
{"title":"Assessing the long-term efficacy of internal loading management to control eutrophication in Lake Rauwbraken","authors":"Frank van Oosterhout, Said Yasseri, N. Noyma, V. Huszar, Marcelo Manzi Marinho, M. Mucci, G. Waajen, M. Lürling","doi":"10.1080/20442041.2021.1969189","DOIUrl":null,"url":null,"abstract":"ABSTRACT Lake Rauwbraken was impacted by eutrophication caused by diffuse external phosphorus (P) loads (total 1.21 mg m−2 d−1, estimated in 2008). Over 40 years, this load built up a legacy pool in the sediments, resulting in 6.82 mg m−2 d−1 PO4-P internal load (estimated in 2008), causing cyanobacterial blooms and swimming bans. To address the internal load in this lake, a low dose treatment of flocculant (polyaluminium chloride) combined with a solid phase phosphate fixative (lanthanum-modified bentonite) was applied in 2008. We examined the chemical and ecological responses to this treatment to demonstrate the efficacy of controlling internal loading without reducing external loading. Based on 2 years pre- and 10 years post-treatment monitoring, the mean Secchi disk depth (3.5–4.0 m) and the hypolimnetic oxygen concentration (0.86–4.55 mg L−1) increased while decreases occurred in turbidity (5.4 to 2.2 NTU), chlorophyll a (16.5 to 5.5 µg L−1), contribution of cyanobacteria (64% to 17% of chlorophyll a), total phosphorus (134 to 14 µg L−1), and total nitrogen (0.96 to 0.50 mg L−1). The treatment reduced the PO4-P release from sediment under anoxic conditions from 15.1 to 1.7 mg m−2 d−1 post-treatment in 2008, 2.3 mg m−2 d−1 in 2011, and 4.7 mg m−2 d−1 in 2013. Post-treatment, submerged macrophytes reached high coverage in 2008 and 2009. Longer term, post-treatment macrophyte cover was reduced. The lake is returning to a eutrophic state as a result of ongoing external P loads 10 years following the control of internal loading.","PeriodicalId":49061,"journal":{"name":"Inland Waters","volume":"12 1","pages":"61 - 77"},"PeriodicalIF":2.7000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inland Waters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/20442041.2021.1969189","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 9
Abstract
ABSTRACT Lake Rauwbraken was impacted by eutrophication caused by diffuse external phosphorus (P) loads (total 1.21 mg m−2 d−1, estimated in 2008). Over 40 years, this load built up a legacy pool in the sediments, resulting in 6.82 mg m−2 d−1 PO4-P internal load (estimated in 2008), causing cyanobacterial blooms and swimming bans. To address the internal load in this lake, a low dose treatment of flocculant (polyaluminium chloride) combined with a solid phase phosphate fixative (lanthanum-modified bentonite) was applied in 2008. We examined the chemical and ecological responses to this treatment to demonstrate the efficacy of controlling internal loading without reducing external loading. Based on 2 years pre- and 10 years post-treatment monitoring, the mean Secchi disk depth (3.5–4.0 m) and the hypolimnetic oxygen concentration (0.86–4.55 mg L−1) increased while decreases occurred in turbidity (5.4 to 2.2 NTU), chlorophyll a (16.5 to 5.5 µg L−1), contribution of cyanobacteria (64% to 17% of chlorophyll a), total phosphorus (134 to 14 µg L−1), and total nitrogen (0.96 to 0.50 mg L−1). The treatment reduced the PO4-P release from sediment under anoxic conditions from 15.1 to 1.7 mg m−2 d−1 post-treatment in 2008, 2.3 mg m−2 d−1 in 2011, and 4.7 mg m−2 d−1 in 2013. Post-treatment, submerged macrophytes reached high coverage in 2008 and 2009. Longer term, post-treatment macrophyte cover was reduced. The lake is returning to a eutrophic state as a result of ongoing external P loads 10 years following the control of internal loading.
期刊介绍:
Inland Waters is the peer-reviewed, scholarly outlet for original papers that advance science within the framework of the International Society of Limnology (SIL). The journal promotes understanding of inland aquatic ecosystems and their management. Subject matter parallels the content of SIL Congresses, and submissions based on presentations are encouraged.
All aspects of physical, chemical, and biological limnology are appropriate, as are papers on applied and regional limnology. The journal also aims to publish articles resulting from plenary lectures presented at SIL Congresses and occasional synthesis articles, as well as issues dedicated to a particular theme, specific water body, or aquatic ecosystem in a geographical area. Publication in the journal is not restricted to SIL members.