Fernando Ojeda, Diego Mendez, A. Fajardo, F. Ellinger
{"title":"On Wireless Sensor Network Models: A Cross-Layer Systematic Review","authors":"Fernando Ojeda, Diego Mendez, A. Fajardo, F. Ellinger","doi":"10.3390/jsan12040050","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks (WSNs) have been adopted in many fields of application, such as industrial, civil, smart cities, health, and the surveillance domain, to name a few. Fateway and sensor nodes conform to WSN, and each node integrates processor, communication, sensor, and power supply modules, sending and receiving information of a covered area across a propagation medium. Given the increasing complexity of a WSN system, and in an effort to understand, comprehend and analyze an entire WSN, different metrics are used to characterize the performance of the network. To reduce the complexity of the WSN architecture, different approaches and techniques are implemented to capture (model) the properties and behavior of particular aspects of the system. Based on these WSN models, many research works propose solutions to the problem of abstracting and exporting network functionalities and capabilities to the final user. Modeling an entire WSN is a difficult task for researchers since they must consider all of the constraints that affect network metrics, devices and system administration, holistically, and the models developed in different research works are currently focused only on a specific network layer (physical, link, or transport layer), making the estimation of the WSN behavior a very difficult task. In this context, we present a systematic and comprehensive review focused on identifying the existing WSN models, classified into three main areas (node, network, and system-level) and their corresponding challenges. This review summarizes and analyzes the available literature, which allows for the general understanding of WSN modeling in a holistic view, using a proposed taxonomy and consolidating the research trends and open challenges in the area.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan12040050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless sensor networks (WSNs) have been adopted in many fields of application, such as industrial, civil, smart cities, health, and the surveillance domain, to name a few. Fateway and sensor nodes conform to WSN, and each node integrates processor, communication, sensor, and power supply modules, sending and receiving information of a covered area across a propagation medium. Given the increasing complexity of a WSN system, and in an effort to understand, comprehend and analyze an entire WSN, different metrics are used to characterize the performance of the network. To reduce the complexity of the WSN architecture, different approaches and techniques are implemented to capture (model) the properties and behavior of particular aspects of the system. Based on these WSN models, many research works propose solutions to the problem of abstracting and exporting network functionalities and capabilities to the final user. Modeling an entire WSN is a difficult task for researchers since they must consider all of the constraints that affect network metrics, devices and system administration, holistically, and the models developed in different research works are currently focused only on a specific network layer (physical, link, or transport layer), making the estimation of the WSN behavior a very difficult task. In this context, we present a systematic and comprehensive review focused on identifying the existing WSN models, classified into three main areas (node, network, and system-level) and their corresponding challenges. This review summarizes and analyzes the available literature, which allows for the general understanding of WSN modeling in a holistic view, using a proposed taxonomy and consolidating the research trends and open challenges in the area.
期刊介绍:
Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.