Causal inference using regression-based statistical control: Confusion in Econometrics

Fan Chao, Guang Yu
{"title":"Causal inference using regression-based statistical control: Confusion in Econometrics","authors":"Fan Chao, Guang Yu","doi":"10.2478/jdis-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract Regression is a widely used econometric tool in research. In observational studies, based on a number of assumptions, regression-based statistical control methods attempt to analyze the causation between treatment and outcome by adding control variables. However, this approach may not produce reliable estimates of causal effects. In addition to the shortcomings of the method, this lack of confidence is mainly related to ambiguous formulations in econometrics, such as the definition of selection bias, selection of core control variables, and method of testing for robustness. Within the framework of the causal models, we clarify the assumption of causal inference using regression-based statistical controls, as described in econometrics, and discuss how to select core control variables to satisfy this assumption and conduct robustness tests for regression estimates.","PeriodicalId":92237,"journal":{"name":"Journal of data and information science (Warsaw, Poland)","volume":"8 1","pages":"21 - 28"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data and information science (Warsaw, Poland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jdis-2023-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Regression is a widely used econometric tool in research. In observational studies, based on a number of assumptions, regression-based statistical control methods attempt to analyze the causation between treatment and outcome by adding control variables. However, this approach may not produce reliable estimates of causal effects. In addition to the shortcomings of the method, this lack of confidence is mainly related to ambiguous formulations in econometrics, such as the definition of selection bias, selection of core control variables, and method of testing for robustness. Within the framework of the causal models, we clarify the assumption of causal inference using regression-based statistical controls, as described in econometrics, and discuss how to select core control variables to satisfy this assumption and conduct robustness tests for regression estimates.
使用基于回归的统计控制的因果推理:计量经济学中的困惑
摘要回归是一种在研究中广泛使用的计量经济学工具。在观察性研究中,基于许多假设,基于回归的统计控制方法试图通过添加控制变量来分析治疗和结果之间的因果关系。然而,这种方法可能无法对因果效应做出可靠的估计。除了该方法的缺点外,这种信心的缺乏主要与计量经济学中模棱两可的公式有关,例如选择偏差的定义、核心控制变量的选择以及稳健性检验方法。在因果模型的框架内,我们使用计量经济学中描述的基于回归的统计控制来澄清因果推断的假设,并讨论如何选择核心控制变量来满足这一假设,并对回归估计进行稳健性检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信