Decompositions of block Schur product

IF 0.7 4区 数学 Q2 MATHEMATICS
Erik Christensen
{"title":"Decompositions of block Schur product","authors":"Erik Christensen","doi":"10.7900/jot.2019feb16.2258","DOIUrl":null,"url":null,"abstract":"Given two m×n matrices A=(aij) and B=(bij) with entries in B(H) for some Hilbert space H, the Schur block product is the m×n matrix A□B:=(aijbij). There exists an m×n matrix S=(sij) with entries from B(H) such that S is a contraction operator and A□B=(diag(AA∗))1/2S(diag(B∗B))1/2. The analogus result for the block Schur tensor product ⊠ defined by Horn and Mathias in \\cite{HM} holds too. This kind of decomposition of the Schur product seems to be unknown, even for scalar matrices. Based on the theory of random matrices we show that the set of contractions S, which may appear in such a decomposition, is a \\textit{thin} set in the ball of all contractions.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2019feb16.2258","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given two m×n matrices A=(aij) and B=(bij) with entries in B(H) for some Hilbert space H, the Schur block product is the m×n matrix A□B:=(aijbij). There exists an m×n matrix S=(sij) with entries from B(H) such that S is a contraction operator and A□B=(diag(AA∗))1/2S(diag(B∗B))1/2. The analogus result for the block Schur tensor product ⊠ defined by Horn and Mathias in \cite{HM} holds too. This kind of decomposition of the Schur product seems to be unknown, even for scalar matrices. Based on the theory of random matrices we show that the set of contractions S, which may appear in such a decomposition, is a \textit{thin} set in the ball of all contractions.
块Schur乘积的分解
给定一个Hilbert空间H的两个m×n矩阵A=(aij)和B=(bij),其项在B(H)中,Schur块积是m×n的矩阵A□B: =(aijbij)。存在具有来自B(H)的项的m×n矩阵S=(sij),使得S是收缩算子□B=(diag(AA*))1/2S(diag)(B*B))1/2。Horn和Mathias在{HM}中定义的块Schur张量积的类似结果也成立。Schur乘积的这种分解似乎是未知的,即使对于标量矩阵也是如此。基于随机矩阵理论,我们证明了在这种分解中可能出现的收缩集S是所有收缩球中的一个集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信