From the Lattice of Torsion Classes to the Posets of Wide Subcategories and ICE-closed Subcategories

Pub Date : 2023-06-13 DOI:10.1007/s10468-023-10214-0
Haruhisa Enomoto
{"title":"From the Lattice of Torsion Classes to the Posets of Wide Subcategories and ICE-closed Subcategories","authors":"Haruhisa Enomoto","doi":"10.1007/s10468-023-10214-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we compute the posets of wide subcategories and ICE-closed subcategories from the lattice of torsion classes in an abelian length category in a purely lattice-theoretical way, by using the kappa map in a completely semidistributive lattice. As for the poset of wide subcategories, we give two more simple constructions via a bijection between wide subcategories and torsion classes with canonical join representations. More precisely, for a completely semidistributive lattice, we give two poset structures on the set of elements with canonical join representations: the kappa order (defined using the extended kappa map of Barnard–Todorov–Zhu), and the core label order (generalizing the shard intersection order for congruence-uniform lattices). Then we show that these posets for the lattice of torsion classes coincide and are isomorphic to the poset of wide subcategories. As a byproduct, we give a simple description of the shard intersection order on a finite Coxeter group using the extended kappa map.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10214-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we compute the posets of wide subcategories and ICE-closed subcategories from the lattice of torsion classes in an abelian length category in a purely lattice-theoretical way, by using the kappa map in a completely semidistributive lattice. As for the poset of wide subcategories, we give two more simple constructions via a bijection between wide subcategories and torsion classes with canonical join representations. More precisely, for a completely semidistributive lattice, we give two poset structures on the set of elements with canonical join representations: the kappa order (defined using the extended kappa map of Barnard–Todorov–Zhu), and the core label order (generalizing the shard intersection order for congruence-uniform lattices). Then we show that these posets for the lattice of torsion classes coincide and are isomorphic to the poset of wide subcategories. As a byproduct, we give a simple description of the shard intersection order on a finite Coxeter group using the extended kappa map.

分享
查看原文
从扭转类的格到宽子范畴和ice闭子范畴的偏序集
在本文中,我们通过在一个完全半分配网格中使用卡帕映射,以一种纯粹的网格理论方式,从一个无性长度范畴中的扭转类网格计算出了宽子范畴和ICE封闭子范畴的正集。至于广子类的正集,我们通过广子类和具有规范连接表示的扭转类之间的偏射,给出了两个更简单的构造。更确切地说,对于完全半分布网格,我们给出了具有规范连接表示的元素集合上的两个正集结构:卡帕阶(使用巴纳德-托多罗夫-朱的扩展卡帕映射定义)和核心标签阶(对全等-均匀网格的碎片交集阶进行概括)。然后,我们证明了这些扭转类网格的正集是重合的,并且与广子类的正集同构。作为副产品,我们利用扩展卡帕映射给出了有限考克斯特群的碎片交集阶的简单描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信