{"title":"Effective use of microbes in waste soil stabilisation considering natural temperature variations","authors":"B. Mir, K. M. N. S. Wani","doi":"10.1080/17486025.2021.1981465","DOIUrl":null,"url":null,"abstract":"ABSTRACT Dredged soils are waste deposits left unutilised in huge quantities. In order to effectively utilise such weak deposits, proper improvement techniques need to be adopted. In this study, four different bacillus microbes namely Bacillus pasteurii, Bacillus megaterium, Bacillus sphaericus and Bacillus subtilis along with cementing solution at different molarities (0.5 and 1 CSM) have been incorporated into the soil at an optical density of 1.5 (108 cells/ml). Unconfined compressive strength (UCS) and permeability tests have been performed on the soil samples. The samples were provided treatment (48 h) and curing (7 and 14 days) in natural conditions. The UCS test results at 0.5 CSM and 7 days curing revealed a noticeable enhancement. Permeability reduced by one order at 14 days of curing and 1 CSM. Three different ranges of temperature depending upon natural climatic variations were designated for testing, and it was concluded that 18–23°C was the optimum temperature for all the treatment processes. This study puts forth the importance of green eco-friendly technology in improving dredged soils from wetland peripheries thus helping indirectly in restoring its balance. Scanning electron microscopy (SEM) along with energy dispersive spectroscopy (EDS) provided conclusive support to the experimental investigations.","PeriodicalId":46470,"journal":{"name":"Geomechanics and Geoengineering-An International Journal","volume":"17 1","pages":"1941 - 1961"},"PeriodicalIF":1.7000,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geoengineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486025.2021.1981465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Dredged soils are waste deposits left unutilised in huge quantities. In order to effectively utilise such weak deposits, proper improvement techniques need to be adopted. In this study, four different bacillus microbes namely Bacillus pasteurii, Bacillus megaterium, Bacillus sphaericus and Bacillus subtilis along with cementing solution at different molarities (0.5 and 1 CSM) have been incorporated into the soil at an optical density of 1.5 (108 cells/ml). Unconfined compressive strength (UCS) and permeability tests have been performed on the soil samples. The samples were provided treatment (48 h) and curing (7 and 14 days) in natural conditions. The UCS test results at 0.5 CSM and 7 days curing revealed a noticeable enhancement. Permeability reduced by one order at 14 days of curing and 1 CSM. Three different ranges of temperature depending upon natural climatic variations were designated for testing, and it was concluded that 18–23°C was the optimum temperature for all the treatment processes. This study puts forth the importance of green eco-friendly technology in improving dredged soils from wetland peripheries thus helping indirectly in restoring its balance. Scanning electron microscopy (SEM) along with energy dispersive spectroscopy (EDS) provided conclusive support to the experimental investigations.
期刊介绍:
Geomechanics is concerned with the application of the principle of mechanics to earth-materials (namely geo-material). Geoengineering covers a wide range of engineering disciplines related to geo-materials, such as foundation engineering, slope engineering, tunnelling, rock engineering, engineering geology and geo-environmental engineering. Geomechanics and Geoengineering is a major publication channel for research in the areas of soil and rock mechanics, geotechnical and geological engineering, engineering geology, geo-environmental engineering and all geo-material related engineering and science disciplines. The Journal provides an international forum for the exchange of innovative ideas, especially between researchers in Asia and the rest of the world.