Analytical Solutions for the Equal Width Equations Containing Generalized Fractional Derivative Using the Efficient Combined Method

IF 1.4 Q2 MATHEMATICS, APPLIED
M. Derakhshan
{"title":"Analytical Solutions for the Equal Width Equations Containing Generalized Fractional Derivative Using the Efficient Combined Method","authors":"M. Derakhshan","doi":"10.1155/2021/7066398","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, the efficient combined method based on the homotopy perturbation Sadik transform method  (HPSTM) is applied to solve the physical and functional equations containing the Caputo–Prabhakar fractional derivative. The mathematical model of this equation of order <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>μ</mi>\n <mo>∈</mo>\n <mfenced open=\"(\" close=\"]\" separators=\"|\">\n <mrow>\n <mn>0,1</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> with <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>λ</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℤ</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>,</mo>\n <mi>σ</mi>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mo>+</mo>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> is presented as follows: <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mmultiscripts>\n <mrow>\n <msubsup>\n <mstyle displaystyle=\"true\">\n <mi mathvariant=\"fraktur\">D</mi>\n </mstyle>\n <mi>t</mi>\n <mi>μ</mi>\n </msubsup>\n </mrow>\n <mprescripts />\n <none />\n <mi>C</mi>\n </mmultiscripts>\n <mi>u</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n </mfenced>\n <mo>+</mo>\n <mi>θ</mi>\n <msup>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>λ</mi>\n </mrow>\n </msup>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n </mfenced>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>x</mi>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n </mfenced>\n <mo>−</mo>\n <mi>σ</mi>\n <msub>\n <mrow>\n <mi>u</mi>\n </mrow>\n <mrow>\n <mi>x</mi>\n <mi>x</mi>\n <mi>t</mi>\n </mrow>\n </msub>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mn>0</mn>\n <mo>,</mo>\n </math>\n </jats:inline-formula> where for <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>λ</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>σ</mi>\n <mo>=</mo>\n <mn>1</mn>\n <mi>s</mi>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>λ</mi>\n <mo>=</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mi>θ</mi>\n <mo>=</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mi>σ</mi>\n <mo>=</mo>\n <mn>1</mn>\n </math>\n </jats:inline-formula>, equations are changed into the equal width and modified equal width equations, respectively. The analytical method which we have used for solving this equation is based on a combination of the homotopy perturbation method and Sadik transform. The convergence and error analysis are discussed in this article. Plots of the analytical results with three examples are presented to show the applicability of this numerical method. Comparison between the obtained absolute errors by the suggested method and other methods is demonstrated.</jats:p>","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/7066398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the efficient combined method based on the homotopy perturbation Sadik transform method  (HPSTM) is applied to solve the physical and functional equations containing the Caputo–Prabhakar fractional derivative. The mathematical model of this equation of order μ 0,1 with λ + , θ , σ + is presented as follows: D t μ C u x , t + θ u λ x , t u x x , t σ u x x t x , t = 0 , where for λ = 1 , θ = 1 , σ = 1 s and λ = 2 , θ = 3 , σ = 1 , equations are changed into the equal width and modified equal width equations, respectively. The analytical method which we have used for solving this equation is based on a combination of the homotopy perturbation method and Sadik transform. The convergence and error analysis are discussed in this article. Plots of the analytical results with three examples are presented to show the applicability of this numerical method. Comparison between the obtained absolute errors by the suggested method and other methods is demonstrated.
含广义分数阶导数等宽方程的有效组合解法
本文提出了一种基于同伦微扰Sadik变换方法的高效组合方法 (HPSTM)用于求解包含Caputo–Prabhakar分数导数的物理和函数方程。μ∈0,1阶方程的数学模型ℤ + , θ,σ∈ℝ + 表示如下:D tμC u x,t+θuλx,t u x x,t−σu x x tx、t=0时,其中对于λ=1,θ=1,σ=1s和λ=2、θ=3,σ=1时,将方程分别转化为等宽方程和修正的等宽方程。我们用来求解这个方程的分析方法是基于同伦微扰方法和Sadik变换的结合。本文讨论了收敛性和误差分析。给出了三个实例的分析结果图,以表明该数值方法的适用性。并与其它方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信