Robust Variance Estimation for Covariate-Adjusted Unconditional Treatment Effect in Randomized Clinical Trials with Binary Outcomes.

IF 0.7 Q3 STATISTICS & PROBABILITY
Statistical Theory and Related Fields Pub Date : 2023-01-01 Epub Date: 2023-04-28 DOI:10.1080/24754269.2023.2205802
Ting Ye, Marlena Bannick, Yanyao Yi, Jun Shao
{"title":"Robust Variance Estimation for Covariate-Adjusted Unconditional Treatment Effect in Randomized Clinical Trials with Binary Outcomes.","authors":"Ting Ye, Marlena Bannick, Yanyao Yi, Jun Shao","doi":"10.1080/24754269.2023.2205802","DOIUrl":null,"url":null,"abstract":"<p><p>To improve precision of estimation and power of testing hypothesis for an unconditional treatment effect in randomized clinical trials with binary outcomes, researchers and regulatory agencies recommend using g-computation as a reliable method of covariate adjustment. However, the practical application of g-computation is hindered by the lack of an explicit robust variance formula that can be used for different unconditional treatment effects of interest. To fill this gap, we provide explicit and robust variance estimators for g-computation estimators and demonstrate through simulations that the variance estimators can be reliably applied in practice.</p>","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"7 1","pages":"159-163"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665030/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2023.2205802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

To improve precision of estimation and power of testing hypothesis for an unconditional treatment effect in randomized clinical trials with binary outcomes, researchers and regulatory agencies recommend using g-computation as a reliable method of covariate adjustment. However, the practical application of g-computation is hindered by the lack of an explicit robust variance formula that can be used for different unconditional treatment effects of interest. To fill this gap, we provide explicit and robust variance estimators for g-computation estimators and demonstrate through simulations that the variance estimators can be reliably applied in practice.

二元结果随机临床试验中协变量调整无条件治疗效果的稳健方差估计
为了提高在具有二元结果的随机临床试验中无条件治疗效果的估计精度和检验假设的能力,研究人员和监管机构建议使用g计算作为协变量调整的可靠方法。然而,由于缺乏可用于感兴趣的不同无条件治疗效果的显式稳健方差公式,g计算的实际应用受到阻碍。为了填补这一空白,我们为g-computation估计量提供了显式和稳健的方差估计量,并通过仿真证明了方差估计量在实践中可以可靠地应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信