Energy efficient cooling through natural ventilation in Kosovo

Q3 Energy
M. Dugolli
{"title":"Energy efficient cooling through natural ventilation in Kosovo","authors":"M. Dugolli","doi":"10.30521/jes.1090315","DOIUrl":null,"url":null,"abstract":"The buildings consume nearly 55% of global electricity. As people are forced to spend more time indoors after pandemic COVID 19, energy efficient, well ventilated, adequate indoor air quality became critical for their health. The household energy consumption is mostly for heating but also for cooling in Kosovo. Aiming to improve energy efficiency, a passive cooling strategy can be applied by using a natural ventilation as the most essential method. However, that requires an analysis of different factors such as positions and the sizes of the openings within one area, the specific period used for ventilation, and the external temperatures and conditions. In this work, the computer application Optivent 2 was used to analyze a generic airflow strategy and evaluate the decisions regarding the feasibility of cooling with natural ventilation for a single house in Kosovo during the warmest month of the year (i.e. August). The results prove that the natural ventilation during the day at the houses, which the areas have only one-sided openings, is effective only for fresh air flow but not sufficient for cooling purposes. When the openings are designed on the opposite walls of the rooms or areas, the conditions will enable that through cross ventilation, the area will be cooled at the same time, by achieving up to 90% of the accessibility limits of comfort, both during the day and nights, at different scenarios on the warmest summer months in Kosovo. These findings will help the architects of Kosovo to identify the proper and most effective passive designs strategy, when it comes to buildings cooling during the summer, in order to achieve the maximal benefit of their designs and the operation of their designed building.","PeriodicalId":52308,"journal":{"name":"Journal of Energy Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30521/jes.1090315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 3

Abstract

The buildings consume nearly 55% of global electricity. As people are forced to spend more time indoors after pandemic COVID 19, energy efficient, well ventilated, adequate indoor air quality became critical for their health. The household energy consumption is mostly for heating but also for cooling in Kosovo. Aiming to improve energy efficiency, a passive cooling strategy can be applied by using a natural ventilation as the most essential method. However, that requires an analysis of different factors such as positions and the sizes of the openings within one area, the specific period used for ventilation, and the external temperatures and conditions. In this work, the computer application Optivent 2 was used to analyze a generic airflow strategy and evaluate the decisions regarding the feasibility of cooling with natural ventilation for a single house in Kosovo during the warmest month of the year (i.e. August). The results prove that the natural ventilation during the day at the houses, which the areas have only one-sided openings, is effective only for fresh air flow but not sufficient for cooling purposes. When the openings are designed on the opposite walls of the rooms or areas, the conditions will enable that through cross ventilation, the area will be cooled at the same time, by achieving up to 90% of the accessibility limits of comfort, both during the day and nights, at different scenarios on the warmest summer months in Kosovo. These findings will help the architects of Kosovo to identify the proper and most effective passive designs strategy, when it comes to buildings cooling during the summer, in order to achieve the maximal benefit of their designs and the operation of their designed building.
科索沃通过自然通风实现节能制冷
这些建筑消耗了全球近55%的电力。新冠肺炎疫情后,人们被迫在室内度过更多时间,节能、通风良好、充足的室内空气质量对他们的健康至关重要。在科索沃,家庭能源消耗主要用于供暖,也用于制冷。为了提高能源效率,可以采用被动冷却策略,将自然通风作为最基本的方法。然而,这需要分析不同的因素,如一个区域内开口的位置和大小,用于通风的特定时间,以及外部温度和条件。在这项工作中,使用计算机应用程序Optivent 2分析了一种通用的气流策略,并评估了在一年中最温暖的月份(即8月)为科索沃的单个房屋使用自然通风冷却的可行性决策。结果证明,白天房屋的自然通风仅对新鲜空气流动有效,但不足以达到冷却目的。当开口设计在房间或区域的相对墙壁上时,条件将使通过交叉通风,该区域将同时降温,在科索沃最温暖的夏季的不同情况下,无论是白天和夜晚,该区域都将达到90%的可达性舒适限制。这些发现将有助于科索沃的建筑师确定适当和最有效的被动式设计策略,当涉及到建筑物在夏季冷却时,为了实现他们的设计和设计建筑的最大效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Systems
Journal of Energy Systems Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.60
自引率
0.00%
发文量
29
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信