El problema de la Braquistócrona en el cilindro S1 × R con varias vueltas

Q4 Social Sciences
H. L. Carrion S.
{"title":"El problema de la Braquistócrona en el cilindro S1 × R con varias vueltas","authors":"H. L. Carrion S.","doi":"10.31349/revmexfise.17.276","DOIUrl":null,"url":null,"abstract":"Presentamos brevemente el problema del braquistócrona en un plano vertical. A seguir presentamos la formulación paramétrica del problema de la braquistócrona sobre la superficie de un cilindro vertical de radio R y encontramos la curva que resuelve este problema. Enseguida formulamos el problema del tautócrona en el cilindro y demostramos que la curva tipo braquistócrona encontrada anteriormente tiene conportamiento tautócrono, esto es, dos partículas sueltas del reposo de puntos distintos de la curva braquistócrona, llegan al punto más bajo de la trajectoria en forma simultánea.Se verifica también que la curva tipo braquistócrona en un plano vertical (cicloide invertida) es límite de la curva tipo braquistócrona encontrada en la superficie cilíndrica cuando el radio delcilindro tiende al infinito. Posteriormente analizamos el problema del braquistócrona entre dos pontos fijos A y B sobre la superficie cilíndrica con la condición adicional de que la partícula antes de llegar al punto final B deve dar um cierto número de vueltas previamente definido. Encontramos la curva que resuelve este problema y adicionalmente encontramos uma relación matemática que determina cuantos vueltas como máximo puede haber si fijamos los valores de las coordenadas del punto inicial (A), final (B), el radio del cilindro y g (la aceleración de la gravedad).","PeriodicalId":49600,"journal":{"name":"Revista Mexicana De Fisica E","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica E","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/revmexfise.17.276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Presentamos brevemente el problema del braquistócrona en un plano vertical. A seguir presentamos la formulación paramétrica del problema de la braquistócrona sobre la superficie de un cilindro vertical de radio R y encontramos la curva que resuelve este problema. Enseguida formulamos el problema del tautócrona en el cilindro y demostramos que la curva tipo braquistócrona encontrada anteriormente tiene conportamiento tautócrono, esto es, dos partículas sueltas del reposo de puntos distintos de la curva braquistócrona, llegan al punto más bajo de la trajectoria en forma simultánea.Se verifica también que la curva tipo braquistócrona en un plano vertical (cicloide invertida) es límite de la curva tipo braquistócrona encontrada en la superficie cilíndrica cuando el radio delcilindro tiende al infinito. Posteriormente analizamos el problema del braquistócrona entre dos pontos fijos A y B sobre la superficie cilíndrica con la condición adicional de que la partícula antes de llegar al punto final B deve dar um cierto número de vueltas previamente definido. Encontramos la curva que resuelve este problema y adicionalmente encontramos uma relación matemática que determina cuantos vueltas como máximo puede haber si fijamos los valores de las coordenadas del punto inicial (A), final (B), el radio del cilindro y g (la aceleración de la gravedad).
S1 × R圆柱体上的臂同步问题与几圈
我们简要介绍了垂直平面上的Braquistocrana问题。接下来,我们给出了R半径垂直圆柱体表面Braquistocrone问题的参数公式,并找到了解决这一问题的曲线。我们很快就解决了圆柱体中的同分异构体问题,并证明了先前发现的Braquistocron型曲线具有同分异构体,即两个来自Braquistocron曲线以外的点的静止的松散粒子,它们同时到达轨迹的最低点。还验证了垂直平面(倒置摆线)上的Braquistocran型曲线是圆柱体半径趋于无穷大时在圆柱表面发现的Braquistocran型曲线的边界。随后,我们分析了圆柱表面上两个固定浮筒A和B之间的Braquistocrane问题,附加条件是粒子在到达终点B之前必须旋转一定数量的圈。我们找到了解决这个问题的曲线,并进一步找到了UMA数学关系,该关系决定了如果我们设置起点(A)、终点(B)、圆柱体半径和G(重力加速度)的坐标值,最多可以有多少圈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista Mexicana De Fisica E
Revista Mexicana De Fisica E 社会科学-科学史与科学哲学
CiteScore
0.80
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Revista Mexicana de Física (Rev. Mex. Fis.) publishes original papers of interest to our readers from the physical science com unity. Language may be English or Spanish, however, given the nature of our readers, English is recommended. Articles are classified as follows: Research. Articles reporting original results in physi­cal science. Instrumentation. Articles reporting original contribu­tions on design and construction of scientific instruments. They should present new instruments and techniques oriented to physical science problems solutions. They must also report measurements performed with the described instrument. Reviews. Critical surveys of specific physical science topics in which recent published information is analyzed and discussed. They should be accessible to physics graduate students and non specialists, and provide valuable bibliography to the specialist. Comments. Short papers (four pages maximum) that assess critically papers by others authors previously published in the Revista Mexicana de Física. A comment should state clearly to which paper it refers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信