Lipschitz continuity in the Hurst index of the solutions of fractional stochastic volterra integro-differential equations

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Nguyen Tien Dung, Ta Cong Son
{"title":"Lipschitz continuity in the Hurst index of the solutions of fractional stochastic volterra integro-differential equations","authors":"Nguyen Tien Dung, Ta Cong Son","doi":"10.1080/07362994.2022.2075385","DOIUrl":null,"url":null,"abstract":"Abstract The problem of investigating the continuity in the Hurst index arises naturally in statistical inferences related to fractional Brownian motion. In this paper, based on the techniques of the Malliavin calculus, we introduce a method to deal with this problem. We first provide an explicit bound on the difference between two non-smooth functionals of Malliavin differentiable random variables. Then, we apply the obtained bound to show Lipchitz continuity of fractional stochastic Volterra integro-differential equations and its additive functionals.","PeriodicalId":49474,"journal":{"name":"Stochastic Analysis and Applications","volume":"41 1","pages":"693 - 712"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07362994.2022.2075385","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The problem of investigating the continuity in the Hurst index arises naturally in statistical inferences related to fractional Brownian motion. In this paper, based on the techniques of the Malliavin calculus, we introduce a method to deal with this problem. We first provide an explicit bound on the difference between two non-smooth functionals of Malliavin differentiable random variables. Then, we apply the obtained bound to show Lipchitz continuity of fractional stochastic Volterra integro-differential equations and its additive functionals.
分数阶随机volterra积分微分方程解的Hurst指数中的Lipschitz连续性
研究Hurst指数的连续性的问题自然出现在与分数布朗运动有关的统计推断中。本文在Malliavin微积分技术的基础上,介绍了一种处理这一问题的方法。我们首先给出了Malliavin可微随机变量的两个非光滑泛函之间差的一个显式界。然后,我们应用所得的界来证明分数阶随机Volterra积分微分方程及其加性泛函的Lipchitz连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Analysis and Applications
Stochastic Analysis and Applications 数学-统计学与概率论
CiteScore
2.70
自引率
7.70%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Stochastic Analysis and Applications presents the latest innovations in the field of stochastic theory and its practical applications, as well as the full range of related approaches to analyzing systems under random excitation. In addition, it is the only publication that offers the broad, detailed coverage necessary for the interfield and intrafield fertilization of new concepts and ideas, providing the scientific community with a unique and highly useful service.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信