{"title":"Air–water flow in a plain stilling basin below smooth and stepped chutes","authors":"I. Stojnic, M. Pfister, J. Matos, A. Schleiss","doi":"10.1080/00221686.2022.2106593","DOIUrl":null,"url":null,"abstract":"In recent decades, stepped chutes followed by a stilling basin became a standard for spillways of dams. The comprehensive knowledge of stepped chute approach flows on internal air–water flow properties of the hydraulic jump is still too limited for an appropriate design of stilling basins. Therefore, an experimental campaign was performed on a large-scale physical model of a plain stilling basin preceded by a 30° sloping smooth or stepped chute. Stepped chute approach flows induce lower deaeration rates along the jump roller as compared to smooth chute approach flows, indicating longer dimensionless jump lengths, normalized by the tailwater depth. Pronounced bottom air concentrations were observed within the first 40% of the jump length in the stilling basin downstream of the stepped chute. Thus, despite the significantly higher pressure fluctuations, this zone seems better protected against cavitation damage than in stilling basins following a smooth chute.","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":"61 1","pages":"51 - 66"},"PeriodicalIF":1.7000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00221686.2022.2106593","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
In recent decades, stepped chutes followed by a stilling basin became a standard for spillways of dams. The comprehensive knowledge of stepped chute approach flows on internal air–water flow properties of the hydraulic jump is still too limited for an appropriate design of stilling basins. Therefore, an experimental campaign was performed on a large-scale physical model of a plain stilling basin preceded by a 30° sloping smooth or stepped chute. Stepped chute approach flows induce lower deaeration rates along the jump roller as compared to smooth chute approach flows, indicating longer dimensionless jump lengths, normalized by the tailwater depth. Pronounced bottom air concentrations were observed within the first 40% of the jump length in the stilling basin downstream of the stepped chute. Thus, despite the significantly higher pressure fluctuations, this zone seems better protected against cavitation damage than in stilling basins following a smooth chute.
期刊介绍:
The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.