{"title":"Mesoporous silica nano-adjuvant triggers pro-inflammatory responses in Caco-2/peripheral blood mononuclear cell (PBMC) co-cultures","authors":"M. Ghasemi, B. Bakhshi, R. Khashei, S. Soudi","doi":"10.1177/18495435221088374","DOIUrl":null,"url":null,"abstract":"The aim of this study was to evaluate the cytotoxicity and immune-stimulatory effect of Mesoporous silica nanoparticle (MSN) Nano-adjuvant on pro-inflammatory cytokines and pattern recognition receptors (PRR) genes expression in Caco-2/PBMC co-culture model. MSNs were synthesized and characterized by scanning electron microscope (SEM), Brunauer Emmett Teller (BET) and Barrett Joyner Halenda (BJH) techniques. The BET specific surface area of MSNs was around 947 m2/g and the total pore volume and average pore diameter were 1.5 cm3/g and 8.01 nm, respectively. At the concentration of 10 µg/mL, MSN showed a low and time-dependent cytotoxicity on Caco-2 cells, while no cytotoxic effect was observed for 0.1 and 1 µg/mL concentrations after 24, 48 and 72 h. The expression of pro-inflammatory cytokines genes (IL-1, IL-8 and TNF-α) in co-cultures treated with different concentrations of MSN showed a dose-dependent significant increase up to 17.44, 2.722 and 4.34 folds, respectively, while the expression augmentation of IL-1 gene was significantly higher than the others. This indicates slight stimulation of intestinal inflammation. Different concentrations of MSN significantly increased TLR4 and NOD2 expression to 4.14 and 2.14 folds, respectively. NOD1 was not affected significantly. It can be concluded that MSN might increase protective immune responses against antigens as a vaccine adjuvant candidate. It seems that stimulation of TNF-α, IL-1, and IL-8 expression in enterocytes probably transpires through the agonistic activity of MSN for TLRs including TLR4, while NOD2-associated signaling pathways are also involved. This study provides an overall picture of MSN as a novel and potent oral adjuvant for mucosal immunity.","PeriodicalId":56366,"journal":{"name":"Nanobiomedicine","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanobiomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/18495435221088374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
The aim of this study was to evaluate the cytotoxicity and immune-stimulatory effect of Mesoporous silica nanoparticle (MSN) Nano-adjuvant on pro-inflammatory cytokines and pattern recognition receptors (PRR) genes expression in Caco-2/PBMC co-culture model. MSNs were synthesized and characterized by scanning electron microscope (SEM), Brunauer Emmett Teller (BET) and Barrett Joyner Halenda (BJH) techniques. The BET specific surface area of MSNs was around 947 m2/g and the total pore volume and average pore diameter were 1.5 cm3/g and 8.01 nm, respectively. At the concentration of 10 µg/mL, MSN showed a low and time-dependent cytotoxicity on Caco-2 cells, while no cytotoxic effect was observed for 0.1 and 1 µg/mL concentrations after 24, 48 and 72 h. The expression of pro-inflammatory cytokines genes (IL-1, IL-8 and TNF-α) in co-cultures treated with different concentrations of MSN showed a dose-dependent significant increase up to 17.44, 2.722 and 4.34 folds, respectively, while the expression augmentation of IL-1 gene was significantly higher than the others. This indicates slight stimulation of intestinal inflammation. Different concentrations of MSN significantly increased TLR4 and NOD2 expression to 4.14 and 2.14 folds, respectively. NOD1 was not affected significantly. It can be concluded that MSN might increase protective immune responses against antigens as a vaccine adjuvant candidate. It seems that stimulation of TNF-α, IL-1, and IL-8 expression in enterocytes probably transpires through the agonistic activity of MSN for TLRs including TLR4, while NOD2-associated signaling pathways are also involved. This study provides an overall picture of MSN as a novel and potent oral adjuvant for mucosal immunity.
NanobiomedicineBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
0.00%
发文量
1
审稿时长
14 weeks
期刊介绍:
Nanobiomedicine is an international, peer-reviewed, open access scientific journal that publishes research in nanotechnology as it interfaces with fundamental studies in biology, as well as its application to the fields of medicine. Nanobiomedicine covers all key aspects of this research field, including, but not limited to, bioengineering, biophysics, physical and biological chemistry, and physiology, as well as nanotechnological applications in diagnostics, therapeutic application, preventive medicine, drug delivery, and monitoring of human disease. Additionally, theoretical and modeling studies covering the nanobiomedicine fields will be considered. All submitted articles considered suitable for Nanobiomedicine are subjected to rigorous peer review to ensure the highest levels of quality. The review process is carried out as quickly as possible to minimize any delays in the online publication of articles. Submissions are encouraged on all topics related to nanobiomedicine, and its clinical applications including but not limited to: Nanoscale-structured biomaterials, Nanoscale bio-devices, Nanoscale imaging, Nanoscale drug delivery, Nanobiotechnology, Nanorobotics, Nanotoxicology, Nanoparticles, Nanocarriers, Nanofluidics, Nanosensors (nanowires, nanophotonics), Nanosurgery (dermatology, gastroenterology, ophthalmology, etc), Nanocarriers commercialization of nanobiomedical technologies, Market trends in the nanobiomedicine space, Ethics and regulatory aspects of nanobiomedicine approval, New perspectives of nanobiomedicine in clinical diagnostics, BioMEMS, Nano-coatings, Plasmonics, Nanoscale visualization.