{"title":"Number of integers represented by\nfamilies of binary forms (I)","authors":"'Etienne Fouvry, M. Waldschmidt","doi":"10.4064/aa220606-16-2","DOIUrl":null,"url":null,"abstract":"We consider some families of binary binomial forms $aX^d+bY^d$, with $a$ and $b$ integers. Under suitable assumptions, we prove that every rational integer $m$ with $|m|\\ge 2$ is only represented by a finite number of the forms of this family (with varying $d,a,b$). Furthermore {the number of such forms of degree $\\ge d_0$ representing $m$ is bounded by $O(|m|^{(1/d_0)+\\epsilon})$} uniformly for $\\vert m \\vert \\geq 2$. We also prove that the integers in the interval $[-N,N]$ represented by one of the form of the family with degree $d\\geq d_0$ are almost all represented by some form of the family with degree $d=d_0$. In a previous {paper} we investigated the particular case where the binary binomial forms are positive definite. We now treat the general case by using a lower bound for linear forms of logarithms.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220606-16-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider some families of binary binomial forms $aX^d+bY^d$, with $a$ and $b$ integers. Under suitable assumptions, we prove that every rational integer $m$ with $|m|\ge 2$ is only represented by a finite number of the forms of this family (with varying $d,a,b$). Furthermore {the number of such forms of degree $\ge d_0$ representing $m$ is bounded by $O(|m|^{(1/d_0)+\epsilon})$} uniformly for $\vert m \vert \geq 2$. We also prove that the integers in the interval $[-N,N]$ represented by one of the form of the family with degree $d\geq d_0$ are almost all represented by some form of the family with degree $d=d_0$. In a previous {paper} we investigated the particular case where the binary binomial forms are positive definite. We now treat the general case by using a lower bound for linear forms of logarithms.