Number of integers represented by families of binary forms (I)

IF 0.5 3区 数学 Q3 MATHEMATICS
'Etienne Fouvry, M. Waldschmidt
{"title":"Number of integers represented by\nfamilies of binary forms (I)","authors":"'Etienne Fouvry, M. Waldschmidt","doi":"10.4064/aa220606-16-2","DOIUrl":null,"url":null,"abstract":"We consider some families of binary binomial forms $aX^d+bY^d$, with $a$ and $b$ integers. Under suitable assumptions, we prove that every rational integer $m$ with $|m|\\ge 2$ is only represented by a finite number of the forms of this family (with varying $d,a,b$). Furthermore {the number of such forms of degree $\\ge d_0$ representing $m$ is bounded by $O(|m|^{(1/d_0)+\\epsilon})$} uniformly for $\\vert m \\vert \\geq 2$. We also prove that the integers in the interval $[-N,N]$ represented by one of the form of the family with degree $d\\geq d_0$ are almost all represented by some form of the family with degree $d=d_0$. In a previous {paper} we investigated the particular case where the binary binomial forms are positive definite. We now treat the general case by using a lower bound for linear forms of logarithms.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa220606-16-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider some families of binary binomial forms $aX^d+bY^d$, with $a$ and $b$ integers. Under suitable assumptions, we prove that every rational integer $m$ with $|m|\ge 2$ is only represented by a finite number of the forms of this family (with varying $d,a,b$). Furthermore {the number of such forms of degree $\ge d_0$ representing $m$ is bounded by $O(|m|^{(1/d_0)+\epsilon})$} uniformly for $\vert m \vert \geq 2$. We also prove that the integers in the interval $[-N,N]$ represented by one of the form of the family with degree $d\geq d_0$ are almost all represented by some form of the family with degree $d=d_0$. In a previous {paper} we investigated the particular case where the binary binomial forms are positive definite. We now treat the general case by using a lower bound for linear forms of logarithms.
二进制族表示的整数个数(I)
我们考虑一些二元二项形式的族 $aX^d+bY^d$, with $a$ 和 $b$ 整数。在适当的假设下,我们证明了每一个有理数 $m$ 有 $|m|\ge 2$ 仅由有限数量的这个家族的形式(有不同的 $d,a,b$). 此外 {学位的数量:这种学位形式的数量 $\ge d_0$ 代表 $m$ 的边界是 $O(|m|^{(1/d_0)+\epsilon})$} 均匀地 $\vert m \vert \geq 2$. 我们也证明了区间内的整数 $[-N,N]$ 以一种形式的家庭用度来表示 $d\geq d_0$ 几乎都以某种形式的家庭为代表吗 $d=d_0$. 在前面 {纸} 我们研究了二元二项形式是正定的特殊情况。现在我们用对数线性形式的下界来处理一般情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Arithmetica
Acta Arithmetica 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
64
审稿时长
4-8 weeks
期刊介绍: The journal publishes papers on the Theory of Numbers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信