Material behaviour in micropolar fluid of Brownian motion over a stretchable disk with application of thermophoretic forces and diffusion-thermo

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Hazarika, S. Ahmed
{"title":"Material behaviour in micropolar fluid of Brownian motion over a stretchable disk with application of thermophoretic forces and diffusion-thermo","authors":"S. Hazarika, S. Ahmed","doi":"10.3329/jname.v18i1.52518","DOIUrl":null,"url":null,"abstract":"To study the material behavior of axisymmetric flow in micropolar fluid for heat and mass exchange over a stretchable disk placed in porous medium taking into account the effect of heat generation, diffusion thermo, Brownian motion and thermophoretic effect. A suitable similarity transformations is adapted to convert the governing PDEs to non-dimensional form. A well-tested, numerically stable MATLAB code in connection with Bvp4c is employed for the conservation of equations. The noticeable features of the relevant parameters on micropolar fluid flow for axial velocity, radial velocity, micro-rotation, temperature and species concentrations profiles are accentuated on the plots using MATLAB. It is found that angular velocity is enhanced for augmented values of micropolar parameter. Moreover, due the effect of thermophoretic force, the thickness of thermal and concentration boundary layer are enhanced. In addition, thermal diffusion becomes more due to the increase in the vortex viscosity of the fluid, and an amplified thermal and molar concentration boundary layer thicknesses can be found.  This study incorporates numerous engineering applications on rotating machineries, spin-coating, centrifugal pumps, computer storage devices, chemical engineering and different aerodynamic issues. Also, this analysis signifies great impact on biomechanics and stenosis related issue in medical sciences.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i1.52518","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

To study the material behavior of axisymmetric flow in micropolar fluid for heat and mass exchange over a stretchable disk placed in porous medium taking into account the effect of heat generation, diffusion thermo, Brownian motion and thermophoretic effect. A suitable similarity transformations is adapted to convert the governing PDEs to non-dimensional form. A well-tested, numerically stable MATLAB code in connection with Bvp4c is employed for the conservation of equations. The noticeable features of the relevant parameters on micropolar fluid flow for axial velocity, radial velocity, micro-rotation, temperature and species concentrations profiles are accentuated on the plots using MATLAB. It is found that angular velocity is enhanced for augmented values of micropolar parameter. Moreover, due the effect of thermophoretic force, the thickness of thermal and concentration boundary layer are enhanced. In addition, thermal diffusion becomes more due to the increase in the vortex viscosity of the fluid, and an amplified thermal and molar concentration boundary layer thicknesses can be found.  This study incorporates numerous engineering applications on rotating machineries, spin-coating, centrifugal pumps, computer storage devices, chemical engineering and different aerodynamic issues. Also, this analysis signifies great impact on biomechanics and stenosis related issue in medical sciences.
应用热泳力和扩散热在可拉伸圆盘上布朗运动微极流体中的材料行为
考虑生热、扩散热、布朗运动和热透效应的影响,研究微极流体轴对称流动在多孔介质中可拉伸圆盘上进行热交换和质量交换的物质行为。采用合适的相似性变换将控制偏微分方程转换为无维形式。一个经过良好测试的,数值稳定的MATLAB代码与Bvp4c连接,用于方程的守恒。利用MATLAB在图上突出了微极流体的轴向速度、径向速度、微旋转、温度和物质浓度等相关参数的显著特征。发现微极参数增大时,角速度增大。此外,由于热泳力的作用,热浓边界层厚度增大。此外,由于流体涡流粘度的增加,热扩散变得更加明显,并且可以发现热浓度和摩尔浓度边界层厚度被放大。这项研究结合了旋转机械、旋转涂层、离心泵、计算机存储设备、化学工程和不同的空气动力学问题的众多工程应用。同时,这一分析对生物力学和狭窄相关的医学问题具有重要的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信