CFD Investigations of the Effect of Rotating Wheels, Ride Height and Wheelhouse Geometry on the Drag Coefficient of Electric Vehicle

Q3 Engineering
{"title":"CFD Investigations of the Effect of Rotating Wheels, Ride Height and Wheelhouse Geometry on the Drag Coefficient of Electric Vehicle","authors":"","doi":"10.46300/9104.2020.14.17","DOIUrl":null,"url":null,"abstract":"The development of electric vehicles demands minimizing aerodynamic drag in order to provide maximum range. The wheels contribute significantly to overall drag coefficient value because of flow separation from rims and wheel arches. In this paper various design parameters are investigated and their influence on vehicle drag coefficient is presented. The investigation has been done with the help of computational fluid dynamics (CFD) tools and with implementation of full vehicle setup with rotating wheels. The obtained results demonstrate changes in drag coefficient with respect to the change of design parameters.","PeriodicalId":39203,"journal":{"name":"International Journal of Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9104.2020.14.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4

Abstract

The development of electric vehicles demands minimizing aerodynamic drag in order to provide maximum range. The wheels contribute significantly to overall drag coefficient value because of flow separation from rims and wheel arches. In this paper various design parameters are investigated and their influence on vehicle drag coefficient is presented. The investigation has been done with the help of computational fluid dynamics (CFD) tools and with implementation of full vehicle setup with rotating wheels. The obtained results demonstrate changes in drag coefficient with respect to the change of design parameters.
旋转车轮、行驶高度和轮室几何形状对电动汽车阻力系数影响的CFD研究
电动汽车的发展要求最大限度地减少空气动力学阻力,以提供最大的续航里程。由于与轮辋和轮拱的流动分离,车轮对整体阻力系数值有很大贡献。本文研究了各种设计参数,并给出了它们对车辆阻力系数的影响。这项研究是在计算流体动力学(CFD)工具的帮助下进行的,并实现了带旋转车轮的整车设置。所获得的结果表明,阻力系数随设计参数的变化而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanics
International Journal of Mechanics Engineering-Computational Mechanics
CiteScore
1.60
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信