{"title":"ESPDS","authors":"C. Diniz, J. Sessions","doi":"10.5552/crojfe.2022.1168","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a Microsoft Excel Workbook containing the software Equipment Selection Problem DS (ESPDS) that recognizes the special structure of the equipment selection problem. The ESPDS approach is based on the context of the Brazilian forestry sector using detailed equipment maintenance schedules. No special restrictions are needed on cost inputs over time or technologies. The output is an equipment schedule that can be used to project equipment investment needs, operational costs, and tree harvesting costs. ESPDS can be applied to support companies and contractors in order to choose the best option for their operations, as well as to achieve better equipment purchase agreements. We will show how ESPDS will also be useful in providing longer term estimates of production costs. The sensitivity analysis shows how different inputs and maintenance polices can affect the best alternative. A numerical example is included considering the entrance of a specific technology that increases the equipment productivity in order to examine whether it can change the solution. ESPDS is intuitive, flexible, and easy to calculate. Although designed for the forestry industry, the approach is readily transferable to other sectors. ESPDS may be found on the web at the following URL: https://www.researchgate.net/publication/350811380_ESPDS_workbook.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Journal of Forest Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5552/crojfe.2022.1168","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a Microsoft Excel Workbook containing the software Equipment Selection Problem DS (ESPDS) that recognizes the special structure of the equipment selection problem. The ESPDS approach is based on the context of the Brazilian forestry sector using detailed equipment maintenance schedules. No special restrictions are needed on cost inputs over time or technologies. The output is an equipment schedule that can be used to project equipment investment needs, operational costs, and tree harvesting costs. ESPDS can be applied to support companies and contractors in order to choose the best option for their operations, as well as to achieve better equipment purchase agreements. We will show how ESPDS will also be useful in providing longer term estimates of production costs. The sensitivity analysis shows how different inputs and maintenance polices can affect the best alternative. A numerical example is included considering the entrance of a specific technology that increases the equipment productivity in order to examine whether it can change the solution. ESPDS is intuitive, flexible, and easy to calculate. Although designed for the forestry industry, the approach is readily transferable to other sectors. ESPDS may be found on the web at the following URL: https://www.researchgate.net/publication/350811380_ESPDS_workbook.
期刊介绍:
Croatian Journal of Forest Engineering (CROJFE) is a refereed journal distributed internationally, publishing original research articles concerning forest engineering, both theoretical and empirical. The journal covers all aspects of forest engineering research, ranging from basic to applied subjects. In addition to research articles, preliminary research notes and subject reviews are published.
Journal Subjects and Fields:
-Harvesting systems and technologies-
Forest biomass and carbon sequestration-
Forest road network planning, management and construction-
System organization and forest operations-
IT technologies and remote sensing-
Engineering in urban forestry-
Vehicle/machine design and evaluation-
Modelling and sustainable management-
Eco-efficient technologies in forestry-
Ergonomics and work safety