{"title":"Subtractive Gradient Boost Clustering for Mobile Node Authentication in Internet of Things Aware 5G Networks","authors":"M. Haripriya, P. Venkadesh","doi":"10.1166/JCTN.2021.9394","DOIUrl":null,"url":null,"abstract":"The 5G mobile wireless network systems faces a lot of security issues due to the opening of network and its insecurity. The insecure network prone to various attacks and it disrupts secure data communications between legitimate users. Many works have addressed the security problems\n in 3G and 4G networks in efficient way through authentication and cryptographic techniques. But, the security in 5G networks during data communication was not improved. Subtractive Gradient Boost Clustered Node Authentication (SGBCNA) Method is introduced to perform secure data communication.\n The subtractive gradient boost clustering technique is applied to authenticate the mobile node as normal nodes and malicious nodes based on the selected features. The designed ensemble clustering model combines the weak learners to make final strong clustering results with minimum loss. Finally,\n the malicious nodes are eliminated and normal mobile nodes are taken for performing the secured communication in 5G networks. Simulation is carried out on factors such as authentication accuracy, computation overhead and security level with respect to a number of mobile nodes and data packets.\n The observed outcomes clearly illustrate that the SGBCNA Method efficiently improves node authentication accuracy, security level with minimum overhead than the state-of-the-art-methods.","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"18 1","pages":"1287-1293"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2021.9394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
The 5G mobile wireless network systems faces a lot of security issues due to the opening of network and its insecurity. The insecure network prone to various attacks and it disrupts secure data communications between legitimate users. Many works have addressed the security problems
in 3G and 4G networks in efficient way through authentication and cryptographic techniques. But, the security in 5G networks during data communication was not improved. Subtractive Gradient Boost Clustered Node Authentication (SGBCNA) Method is introduced to perform secure data communication.
The subtractive gradient boost clustering technique is applied to authenticate the mobile node as normal nodes and malicious nodes based on the selected features. The designed ensemble clustering model combines the weak learners to make final strong clustering results with minimum loss. Finally,
the malicious nodes are eliminated and normal mobile nodes are taken for performing the secured communication in 5G networks. Simulation is carried out on factors such as authentication accuracy, computation overhead and security level with respect to a number of mobile nodes and data packets.
The observed outcomes clearly illustrate that the SGBCNA Method efficiently improves node authentication accuracy, security level with minimum overhead than the state-of-the-art-methods.