Deng Yousheng, Zhang Keqin, Li Wenjie, Song Qian, Ma Erli
{"title":"Optimization of beam parameters for coupling beam pile structure foundations under vertical loading","authors":"Deng Yousheng, Zhang Keqin, Li Wenjie, Song Qian, Ma Erli","doi":"10.1002/tal.2007","DOIUrl":null,"url":null,"abstract":"The coupling beam pile structure is a new type of foundation for high‐rise buildings that can be easily constructed. The vertical load‐bearing characteristics of the coupling beam pile structure are examined using indoor model tests and numerical calculations to optimize the beam structure's parameters. The validity of the finite element model is then confirmed, and the beam structure's width, length, and stiffness are changed to examine their effects on the load‐bearing capacity. The results show that the load–settlement curve of the structure varies slightly, with a 45.10% increase in load‐carrying capacity compared to a pile group foundation for the same load, and that the coupling beam can support heavier loads while also distributing the tension of the loads. The width and length of the coupling beam are proportional to the load‐carrying capacity of the structure. The width of the coupling beam should be kept at 3.5 times the pile diameter since any wider width results in the “wall group effect,” which reduces the foundation's ability to support the weight. The coupling beam's short length, which should be kept above 4.5 times the pile diameter, can aid in reducing the “pile group effect.” The coupling beam stiffness can be changed according to the scenario in practice; there is no upper limit. The coupling beam stiffness is 5 times the reference value when it has the strongest force transmission capacity but has essentially little impact on the structure's load‐carrying capacity.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2007","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The coupling beam pile structure is a new type of foundation for high‐rise buildings that can be easily constructed. The vertical load‐bearing characteristics of the coupling beam pile structure are examined using indoor model tests and numerical calculations to optimize the beam structure's parameters. The validity of the finite element model is then confirmed, and the beam structure's width, length, and stiffness are changed to examine their effects on the load‐bearing capacity. The results show that the load–settlement curve of the structure varies slightly, with a 45.10% increase in load‐carrying capacity compared to a pile group foundation for the same load, and that the coupling beam can support heavier loads while also distributing the tension of the loads. The width and length of the coupling beam are proportional to the load‐carrying capacity of the structure. The width of the coupling beam should be kept at 3.5 times the pile diameter since any wider width results in the “wall group effect,” which reduces the foundation's ability to support the weight. The coupling beam's short length, which should be kept above 4.5 times the pile diameter, can aid in reducing the “pile group effect.” The coupling beam stiffness can be changed according to the scenario in practice; there is no upper limit. The coupling beam stiffness is 5 times the reference value when it has the strongest force transmission capacity but has essentially little impact on the structure's load‐carrying capacity.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.