Hongwei Jin, Krishnan Raghavan, G. Papadimitriou, Cong Wang, A. Mandal, M. Kiran, E. Deelman, Prasanna Balaprakash
{"title":"Graph neural networks for detecting anomalies in scientific workflows","authors":"Hongwei Jin, Krishnan Raghavan, G. Papadimitriou, Cong Wang, A. Mandal, M. Kiran, E. Deelman, Prasanna Balaprakash","doi":"10.1177/10943420231172140","DOIUrl":null,"url":null,"abstract":"Identifying and addressing anomalies in complex, distributed systems can be challenging for reliable execution of scientific workflows. We model these workflows as directed acyclic graphs (DAGs), where the nodes and edges of the DAGs represent jobs and their dependencies, respectively. We develop graph neural networks (GNNs) to learn patterns in the DAGs and to detect anomalies at the node (job) and graph (workflow) levels. We investigate workflow-specific GNN models that are trained on a particular workflow and workflow-agnostic GNN models that are trained across the workflows. Our GNN models, which incorporate both individual job features and topological information from the workflow, show improved accuracy and efficiency compared to conventional learning methods for detecting anomalies. While joint trained with multiple scientific workflows, our GNN models reached an accuracy more than 80% for workflow level and 75% for job level anomalies. In addition, we illustrate the importance of hyperparameter tuning method in our study that can significantly improve the metric(s) measure of evaluating the GNN models. Finally, we integrate explainable GNN methods to provide insights on job features in the workflow that cause an anomaly.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"37 1","pages":"394 - 411"},"PeriodicalIF":3.5000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420231172140","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 2
Abstract
Identifying and addressing anomalies in complex, distributed systems can be challenging for reliable execution of scientific workflows. We model these workflows as directed acyclic graphs (DAGs), where the nodes and edges of the DAGs represent jobs and their dependencies, respectively. We develop graph neural networks (GNNs) to learn patterns in the DAGs and to detect anomalies at the node (job) and graph (workflow) levels. We investigate workflow-specific GNN models that are trained on a particular workflow and workflow-agnostic GNN models that are trained across the workflows. Our GNN models, which incorporate both individual job features and topological information from the workflow, show improved accuracy and efficiency compared to conventional learning methods for detecting anomalies. While joint trained with multiple scientific workflows, our GNN models reached an accuracy more than 80% for workflow level and 75% for job level anomalies. In addition, we illustrate the importance of hyperparameter tuning method in our study that can significantly improve the metric(s) measure of evaluating the GNN models. Finally, we integrate explainable GNN methods to provide insights on job features in the workflow that cause an anomaly.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.