Mahdi Usefvand, Ali Mohammad Rousta, M. G. Azandariani, H. Abdolmaleki
{"title":"Steel dual-ring dampers: Micro-finite element modelling and validation of cyclic behavior","authors":"Mahdi Usefvand, Ali Mohammad Rousta, M. G. Azandariani, H. Abdolmaleki","doi":"10.12989/SSS.2021.28.4.579","DOIUrl":null,"url":null,"abstract":"Extensive studies have been performed by researchers to increase the ductility and energy-absorption of concentrically braced frames. One of the most widely used strategies for increasing ductility and energy-absorbing is the utilization of energy-dissipation systems. In this regard, the energy-dissipation system consisting of a steel dual-ring damper (SDRD) with different construction details is presented, to improve hysteresis behavior and performance of steel ring dampers (SRD). The most important cause of energy-dissipation in SRDs are the development of bending plastic hinges in the rings. Therefore, by adding an inner ring to the SDR system, it increases the number of moment plastic hinges and in turn increases energy dissipation. Parametric studies havse been performed applying the nonlinear micro-finite element (MFE) procedure to investigate the improved models. The parametric studies comprise examining the efficacy of thickness parameters and the inner ring diameters of the improved models. The SRD models was selected as the base model for comparing and evaluating the effects of improved dampers. MFE models were then analyzed under cyclic loading and nonlinear static methods. Confirmation of the results of the MFE models were performed against the test results. The results indicated that the diameter to the thickness ratio of inner ring of SDRDs has a considerable influence on determining the hysteresis behavior, ductility, ultimate capacity and performance, as well as energy dissipation. Also, the results show that the details of the construction of the internal and external ring connections were a considerable effect on the performance and hysteresis behavior of SDRDs.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"28 1","pages":"579"},"PeriodicalIF":2.1000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.28.4.579","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
Extensive studies have been performed by researchers to increase the ductility and energy-absorption of concentrically braced frames. One of the most widely used strategies for increasing ductility and energy-absorbing is the utilization of energy-dissipation systems. In this regard, the energy-dissipation system consisting of a steel dual-ring damper (SDRD) with different construction details is presented, to improve hysteresis behavior and performance of steel ring dampers (SRD). The most important cause of energy-dissipation in SRDs are the development of bending plastic hinges in the rings. Therefore, by adding an inner ring to the SDR system, it increases the number of moment plastic hinges and in turn increases energy dissipation. Parametric studies havse been performed applying the nonlinear micro-finite element (MFE) procedure to investigate the improved models. The parametric studies comprise examining the efficacy of thickness parameters and the inner ring diameters of the improved models. The SRD models was selected as the base model for comparing and evaluating the effects of improved dampers. MFE models were then analyzed under cyclic loading and nonlinear static methods. Confirmation of the results of the MFE models were performed against the test results. The results indicated that the diameter to the thickness ratio of inner ring of SDRDs has a considerable influence on determining the hysteresis behavior, ductility, ultimate capacity and performance, as well as energy dissipation. Also, the results show that the details of the construction of the internal and external ring connections were a considerable effect on the performance and hysteresis behavior of SDRDs.
期刊介绍:
An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include:
Sensors/Actuators(Materials/devices/ informatics/networking)
Structural Health Monitoring and Control
Diagnosis/Prognosis
Life Cycle Engineering(planning/design/ maintenance/renewal)
and related areas.