Effect of agitation speed on microencapsulation of healing agent in PMMA shell and study on the mechanical properties of epoxy/PMMA microcapsules

IF 2.1 3区 工程技术 Q2 ENGINEERING, CIVIL
R. Jahadi, H. Beheshti, M. Heidari-Rarani, A. H. Navarchian
{"title":"Effect of agitation speed on microencapsulation of healing agent in PMMA shell and study on the mechanical properties of epoxy/PMMA microcapsules","authors":"R. Jahadi, H. Beheshti, M. Heidari-Rarani, A. H. Navarchian","doi":"10.12989/SSS.2021.27.6.1001","DOIUrl":null,"url":null,"abstract":"In this study, the effect of agitation speed as a key process parameter on the morphology and particle size of epoxy-Poly (methyl methacrylate) (PMMA) microcapsules was investigated. Thus, a new interpretation is presented to relate between the microcapsule size to rotational speed so as to predict the particle size at different agitation speeds from the initial capsule size. The PMMA shell capsules containing EC 157 epoxy and hardener as healing materials were fabricated through the internal phase separation method. The process was performed at 600 and 1000 rpm mechanical mixing rates. Scanning electron microscopy (SEM) revealed the formation of spherical microcapsules with smooth surfaces. According to static light scattering (SLS) results, the average diameter size of the epoxy/PMMA capsules at two mixing rates were 7.49 and 5.11","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"27 1","pages":"1001"},"PeriodicalIF":2.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.6.1001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, the effect of agitation speed as a key process parameter on the morphology and particle size of epoxy-Poly (methyl methacrylate) (PMMA) microcapsules was investigated. Thus, a new interpretation is presented to relate between the microcapsule size to rotational speed so as to predict the particle size at different agitation speeds from the initial capsule size. The PMMA shell capsules containing EC 157 epoxy and hardener as healing materials were fabricated through the internal phase separation method. The process was performed at 600 and 1000 rpm mechanical mixing rates. Scanning electron microscopy (SEM) revealed the formation of spherical microcapsules with smooth surfaces. According to static light scattering (SLS) results, the average diameter size of the epoxy/PMMA capsules at two mixing rates were 7.49 and 5.11
搅拌速度对愈合剂微胶囊化的影响及环氧树脂/PMMA微胶囊力学性能的研究
研究了搅拌速度作为关键工艺参数对环氧-聚甲基丙烯酸甲酯(PMMA)微胶囊形态和粒径的影响。因此,提出了一种新的解释,将微胶囊尺寸与旋转速度联系起来,以便从初始胶囊尺寸预测不同搅拌速度下的颗粒尺寸。采用内相分离法制备了含有EC 157环氧树脂和固化剂作为愈合材料的PMMA壳胶囊。该过程在600和1000rpm的机械混合速率下进行。扫描电子显微镜(SEM)显示形成了表面光滑的球形微胶囊。根据静态光散射(SLS)结果,在两种混合速率下,环氧树脂/PMMA胶囊的平均直径尺寸分别为7.49和5.11
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Structures and Systems
Smart Structures and Systems 工程技术-工程:机械
CiteScore
6.50
自引率
8.60%
发文量
0
审稿时长
9 months
期刊介绍: An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include: Sensors/Actuators(Materials/devices/ informatics/networking) Structural Health Monitoring and Control Diagnosis/Prognosis Life Cycle Engineering(planning/design/ maintenance/renewal) and related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信