Hybrid Semantic Feature Descriptor and Fuzzy C-Means Clustering for Lung Cancer Detection and Classification

Q3 Chemistry
P. Priyadharshini, B. Zoraida
{"title":"Hybrid Semantic Feature Descriptor and Fuzzy C-Means Clustering for Lung Cancer Detection and Classification","authors":"P. Priyadharshini, B. Zoraida","doi":"10.1166/JCTN.2021.9391","DOIUrl":null,"url":null,"abstract":"Lung cancer (LC) will decrease the yield, which will have a negative impact on the economy. Therefore, primary and accurate the attack finding is a priority for the agro-dependent state. In several modern technologies for early detection of LC, image processing has become a one of the\n essential tool so that it cannot only early to find the disease accurately, but also successfully measure it. Various approaches have been developed to detect LC based on background modelling. Most of them focus on temporal information but partially or completely ignore spatial information,\n making it sensitive to noise. In order to overcome these issues an improved hybrid semantic feature descriptor technique is introduced based on Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Pattern (LBP) and histogram of oriented gradients (HOG) feature extraction algorithms. And also\n to improve the LC segmentation problems a fuzzy c-means clustering algorithm (FCM) is used. Experiments and comparisons on publically available LIDC-IBRI dataset. To evaluate the proposed feature extraction performance three different classifiers are analysed such as artificial neural networks\n (ANN), recursive neural network and recurrent neural networks (RNNs).","PeriodicalId":15416,"journal":{"name":"Journal of Computational and Theoretical Nanoscience","volume":"18 1","pages":"1263-1269"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JCTN.2021.9391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer (LC) will decrease the yield, which will have a negative impact on the economy. Therefore, primary and accurate the attack finding is a priority for the agro-dependent state. In several modern technologies for early detection of LC, image processing has become a one of the essential tool so that it cannot only early to find the disease accurately, but also successfully measure it. Various approaches have been developed to detect LC based on background modelling. Most of them focus on temporal information but partially or completely ignore spatial information, making it sensitive to noise. In order to overcome these issues an improved hybrid semantic feature descriptor technique is introduced based on Gray-Level Co-Occurrence Matrix (GLCM), Local Binary Pattern (LBP) and histogram of oriented gradients (HOG) feature extraction algorithms. And also to improve the LC segmentation problems a fuzzy c-means clustering algorithm (FCM) is used. Experiments and comparisons on publically available LIDC-IBRI dataset. To evaluate the proposed feature extraction performance three different classifiers are analysed such as artificial neural networks (ANN), recursive neural network and recurrent neural networks (RNNs).
混合语义特征描述符和模糊c均值聚类用于肺癌检测和分类
癌症(LC)将降低产量,这将对经济产生负面影响。因此,初步准确的攻击发现是农业依赖州的优先事项。在几种早期检测LC的现代技术中,图像处理已经成为一种重要的工具,因此它不仅可以早期准确地发现疾病,而且可以成功地测量疾病。基于背景建模的各种方法已经被开发出来检测LC。它们大多关注时间信息,但部分或完全忽略空间信息,使其对噪声敏感。为了克服这些问题,在灰度共生矩阵(GLCM)、局部二进制模式(LBP)和梯度直方图(HOG)特征提取算法的基础上,提出了一种改进的混合语义特征描述符技术。并且为了改进LC分割问题,使用了模糊c-均值聚类算法(FCM)。在公开可用的LIDC-IBRI数据集上的实验和比较。为了评估所提出的特征提取性能,分析了三种不同的分类器,如人工神经网络(ANN)、递归神经网络和递归神经网络(RNN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational and Theoretical Nanoscience
Journal of Computational and Theoretical Nanoscience 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.9 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信