{"title":"Insights into the energy returning properties of ‘super shoes’ from a novel, highly accurate, biplanar videoradiography dataset","authors":"Quinn Yetman, A. Arndt, M. Rainbow","doi":"10.1080/19424280.2023.2199391","DOIUrl":null,"url":null,"abstract":"Recent footwear designs have resulted in reductions in metabolic cost and decreases in personal best times in runners (Hoogkamer et al., 2018). This has been attributed to shoes with a combination of a thick midsole and carbon fibre plate (carbon plate shoes) first introduced by Nike in their Breaking2 event. There are many theories on how these shoes decrease metabolic cost, including the stiff carbon plate storing and releasing energy, the midsole thickness, and the shoe acting as a teeter-totter system (Patoz et al., 2022). However, no unifying theory has emerged, and the response varies widely across runners. One challenge that has limited the ability to determine how these shoes lower cost is associated with the difficulty measuring the mechanics of the foot and foot-shoe system in vivo. In this pilot study, we address this gap by simultaneously measuring foot bone motion with biplanar videoradiography (BVR) and foot-shoe power in these so called ‘super shoes’.","PeriodicalId":45905,"journal":{"name":"Footwear Science","volume":"15 1","pages":"S117 - S119"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Footwear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19424280.2023.2199391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent footwear designs have resulted in reductions in metabolic cost and decreases in personal best times in runners (Hoogkamer et al., 2018). This has been attributed to shoes with a combination of a thick midsole and carbon fibre plate (carbon plate shoes) first introduced by Nike in their Breaking2 event. There are many theories on how these shoes decrease metabolic cost, including the stiff carbon plate storing and releasing energy, the midsole thickness, and the shoe acting as a teeter-totter system (Patoz et al., 2022). However, no unifying theory has emerged, and the response varies widely across runners. One challenge that has limited the ability to determine how these shoes lower cost is associated with the difficulty measuring the mechanics of the foot and foot-shoe system in vivo. In this pilot study, we address this gap by simultaneously measuring foot bone motion with biplanar videoradiography (BVR) and foot-shoe power in these so called ‘super shoes’.