{"title":"Ship Detection in SAR Images via Cross-Attention Mechanism","authors":"Yilong Lv, Min Li","doi":"10.1080/07038992.2022.2118109","DOIUrl":null,"url":null,"abstract":"Abstract Deep learning has been widely applied to ship detection in Synthetic Aperture Radar (SAR) images. Unlike optical images, the current object detection methods have the problem of weak feature representation due to the low object resolution in SAR images. In addition, disturbed by chaotic noise, the features of classification and location are prone to significant differences, resulting in classification and location task misalignment. Therefore, this paper proposes a novel SAR ship target detection algorithm based on Cross-Attention Mechanism (CAM), which can establish the information interaction between the classification and localization task and strengthen the correlation between features through attention. In addition, to suppress the noise in multi-scale feature fusion, we designed an Attention-based Feature Fusion Module (AFFM), which uses the attention information between channels to perform the re-weighting operation. This operation can enhance useful feature information and suppress noise information. Experimental results show that on a benchmark SAR Ship Detection Dataset (SSDD), the Fully Convolutional One-Stage Object Detector (FCOS) with ResNet-50 backbone network was optimized to improve AP by 6.5% and computational cost by 0.51%. RetinaNet with ResNet-50 backbone network was optimized to improve AP by 1.8% and computational cost by 0.51%.","PeriodicalId":48843,"journal":{"name":"Canadian Journal of Remote Sensing","volume":"48 1","pages":"764 - 778"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07038992.2022.2118109","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Deep learning has been widely applied to ship detection in Synthetic Aperture Radar (SAR) images. Unlike optical images, the current object detection methods have the problem of weak feature representation due to the low object resolution in SAR images. In addition, disturbed by chaotic noise, the features of classification and location are prone to significant differences, resulting in classification and location task misalignment. Therefore, this paper proposes a novel SAR ship target detection algorithm based on Cross-Attention Mechanism (CAM), which can establish the information interaction between the classification and localization task and strengthen the correlation between features through attention. In addition, to suppress the noise in multi-scale feature fusion, we designed an Attention-based Feature Fusion Module (AFFM), which uses the attention information between channels to perform the re-weighting operation. This operation can enhance useful feature information and suppress noise information. Experimental results show that on a benchmark SAR Ship Detection Dataset (SSDD), the Fully Convolutional One-Stage Object Detector (FCOS) with ResNet-50 backbone network was optimized to improve AP by 6.5% and computational cost by 0.51%. RetinaNet with ResNet-50 backbone network was optimized to improve AP by 1.8% and computational cost by 0.51%.
期刊介绍:
Canadian Journal of Remote Sensing / Journal canadien de télédétection is a publication of the Canadian Aeronautics and Space Institute (CASI) and the official journal of the Canadian Remote Sensing Society (CRSS-SCT).
Canadian Journal of Remote Sensing provides a forum for the publication of scientific research and review articles. The journal publishes topics including sensor and algorithm development, image processing techniques and advances focused on a wide range of remote sensing applications including, but not restricted to; forestry and agriculture, ecology, hydrology and water resources, oceans and ice, geology, urban, atmosphere, and environmental science. Articles can cover local to global scales and can be directly relevant to the Canadian, or equally important, the international community. The international editorial board provides expertise in a wide range of remote sensing theory and applications.